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1.INTRODUCTION

Since the pioneering work of Tsu and Esaki [1], there has been growing interest in the
double-barrier resonant tunneling two and three terminal devices [2-13]. Further, since the
initial proposal of Datta et al [14], there has also been rising interest in the basic physics
accompanying the Aharonov-Bohm effect in heterostructures. Indeed, major advances in
material technology has enabled device scientists to conjecture about new device structures
that both test and illustrate the basic fundamental quantum physics of few and many
particle systems. For example issues of nonlocality, often relegated to esoterica, now find
its way into discussions on transport in quantum devices. Nonlocality in classical physics is
illustrated by the coulomb interaction that decreases as the square of the distance between
particles. In quantum mechanics there are additional interactions that do not necessarily
drop off with distance. The effect of nonlocality is represented in the quantum mechanical
equations and in the boundary conditions to the system. A second issue involves
dissipation. Schrodinger's equation is dissipationless, and if all transport in subsystems
were governed by Schrodingers equation without interactions between the subsystems, all
transport would be ballistic. Dissipation in quantum mechanics is treated by introducing
additional systems, e.g. a phonon system, and allowing the additional systems to cause a
transition between states of the original system.

Our ability to use quantum mechanics to describe physical phenomena in ultrasmall devices
and to propose quantum phase based devices has been evolutionary. Through a coupling of
experiment, theory and numerical simulation we are better able to understand how basic
quantum mechanical processes affect device physics. An evolutionary parallel exists with
the more standard semiconductor FETs that are currently being used in DOD and
commercial applications. We digress for a moment to illustrate.

Originally, when FETs were discussed it was in terms of their DC characteristics; and when
these devices were considered, e.g., for linear amplifier applications, the DC characteristics
were used to obtain such small signal quantities as transconductance. Unfortunately the dc
characteristics do not display the basic properties of the FET. They hide the influence of
traps, charge particle instabilities, etc. To demonstrate this, nearly a decade ago, workers
[15], currently at Scientific Research Associates, Inc., based on theoretical studies suggested
that the large signal characterization of a device is significantly different than the dc
characterization. Experimental work, carried out in collaboration with these workers
confirmed this result. We display this result in figure 1. The key point to notice about this
figure is that the dc and transient characterization of the FET are dramatically different!
Indeed, in response to this dilemma, the MIMIC community is questioning whether the DC
characterization of FETs has any relevance in the design of power FETs.

The situation with quantum phase based devices is similar to that of the FET modeling S
over ten years ago. With few exceptions, e.g., of some Wigner studies [16] most of the E0
analysis is time-independent. This has introduced interpretive difficulties: 0

First: the dc studies, do not account for the peak to valley ratio of resonant tunneling
devices.

Second: the dc studies do not adequately treat dissipation. des
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Third: the dc studies do not treat hysterisis in the current voltage characteristics, observed
experimentally.

Fourth: the dc treatment cannot predict how the devices will be used in applications.

Fifth: the dc treatment cannot treat the time dependent nature of the boundary conditions
that represent physical contacts,

Sixth: the studies associated with the A-B effect are all time independent and small signal,
and the limits of the physics of this phenomena are unknown.

The above studies suffer from lack of incorporating the feature basic to quantum
mechanical phenomena: all quantum mechanical devices are time dependent. Apart from
dissipation, there are always reflections off boundaries, barriers, wells, imperfections and
contacts. What is needed is a full time dependent large signal numerical studies of
quantum feature size devices.

The purpose of this document is to summarize studies under Contract F49620-87-C-0055,
the study of the physics of quantum based electronic devices, that is, devices whose only
description is quantum mechanical.

2. SUMMARY OF STUDIES UNDER CONTRACT F49620-87-C-0055

During the current program a number of key steps were taken in the direction of
developing a time dependent algorithm for examining quantum phase based devices. Some
of these steps are summarized below. These studies included:

(1) implementation of a fully self-consistent (Poisson's equation is included) solution to the
moments of the Wigner distribution function,

(2) implementation of a two dimensional Schrodinger equation solver for examining

quantum diffraction phenomena, and

(3) initial implemention of a density matrix solver for examining quantum transport.

2a. MOMENTS OF THE WIGNER DISTRIBUTION FUNCTION

This study started from the equation of motion of the Wigner distribution function [17].
Assuming a specific form for the Wigner function a set of moment equations was derived.
The moment equations are regarded as the quantum mechanical equivalent of the
semiclassical moments of the Boltzmann transport equation, and are designed to enable
broad use by the scientific community in examining quantum device physics. Three
equations were derived: the continuity equation, the momentm balance equation, and the
energy balance equation. Implementing the first two equations, transport in resonant
tunnelling structure was studied. The phenomena of resonance was observed. It
remains to incnrporate the energy balance equation to obtain the correct voltage levels
for resonance. Two paper discussing the moment equations were published. They are
included as Appendix A and B of this document.
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2b. TWO DIMENSIONAL TIME DEPENDENT
SOLUTION TO SCHRODINGERS EQUATION

Most studies of the switching response of quantum phase based devices are one
dimensional. In practice electrons are injected through 3D contacts and tunnelling through
the quantum well of resonant tunnelling diodes is characterized by at least two dimensional
transport. This calls for a two dimensional transient analysis of quantum transport.
Presently the two dimensional analysis is beyond the scope of the density matrix discussion.
Instead preliminary steps were taken to address this problem by examining the time
evolution of a wavepacket through a multidimensional slit.

Briefly, we studied the diffraction of a two-dimensional Gaussian wavepacket through a
rectangular aperture in a finite potential well ( a single slit experiment). The simulations
show a small fraction of the wavepacket tunneling through the potential barrier. But the
dominant transport shows a near field diffraction pattern behind the slit for a small time
duration (2ps). At a later time, no far field diffraction pattern is seen.

A copy of a paper published on this matter is included as Appendix C.

2c. AHARONOV-BOHM EFFECT

Most recently we were able to predict the existence of two different sets of conductance
minima in the conductance oscillations of a one dimensional ring due to the electrostatic
A-B effect.

A copy of a paper summarizing this work is included as Appendix D.

2d. THE DENSITY MATRIX

The technique of choice is to solve the equation of motion of the density matrix in the
coordinate representation. The solution to the equation of motion of the density matrix is:

1. Time dependent,

2. More general that the Tsu-Easki formulation, which apart from severe analytical
approximations, treats the current carrying states as stationary,

3. Capable of treating dissipation.

Under the present study we have already solved this equation for several different
configurations and boundaries. While solutions to the problem of quantum transport
through the density matrix in the coordinate representation has been proposed earlier by
Frensley [18], Scientific Research Associates, Inc. (SRA) is the first group that has been
successful in obtaining solutions. The resulting insight into the physics, garnered from
these studies as we discuss below, places SRA in a unique position to interpret present
experimental results. Theic are, of course, other time dependent methods that have been
used to determine the operation of devices [16]. One mentioned above is the Wigner
distribution approach. We have implemented the moments of the Wigner function in this
aspect. Others have attempted to solve the full time dependent Wigner function. While the
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density matrix approach used by the those at SRA and the Wigner approach are
mathematically equivalent, the present state of numerical development does not render the
Wigner and density matrix approach to be equivalent, and the wavelike nature of the time
dependent solution as obtained from the Wigner approach is not always apparent.

The structures that we discuss fall under the category of "open structures" [18], which can
exchange particles with its surrounding, and which mathematically expresses this interaction
in terms of boundary conditions. The phenomena we are interested in will be with systems
that are far from equilibrium.

In describing this nonequilibrium phenomena, the issues of interest include the means of
describing the phenomena. This is nontrivial. For example, one of the main difficulties in
trying to understand the precise changes implied by quantum mechanics lies in the
formalism itself. It is very different from that of classical mechanics. In past studies under
this contract we have adapted the approach of Bohm in describing quantum mechanics in a
language that is closer to that of classical mechanics. This is achieved by writing the wave
function of the system of interest in the form:

(1) O=Rexp[iS/h]

By assuming that the wavefunction satisfies Schrodinger's equation we obtain two real
equations, one of which has the form of a classical equation supplemented by an additional
term called the quantum potential, and a second equation describing the conservation of
probability. To understand these equations it is necessary to assume that there is a
microscopic reality in which particles have both position and momentum, although these
cannot be measured simultaneously. The solutions of these quantum mechanical equations
of motion gives rise to an ensemble of individual particle trajectories arising from various
initial conditions. If the distribution of initial conditions agrees with that calculated from
the initial wave function, then the ensemble will give rise to the expected probability
distributions found in experiment. This approach often suggests the possibility of
introducing a quantum Monte Carlo formulation.

In previous studies at SRA, the description of the ensemble of individual particles was
treated either through implementation of Wigner distribution procedures or through
implementation of the density matrix in the coordinate representation. Since the Wigner
distribution function and the density matrix in the coordinate representation are related
through a direct integral transformation they contain the same'physics. The advantages of
using one against the other lies in the computational efficacy with which the underlying
physics is exposed. It is anticipated that in the future, the choice will depend on personal
preference. Under the present Contract both were used, although differently.

The density matrix or equivalently the Wigner function is the tool required to transition
between measurements and theory for multiparticle systems such as tunneling devices, A-B
devices etc. They represent the essence of mixed states and are at the basis of all
theoretical descriptions of measurement. We describe these briefly below.

MIXED STATES AND THE DENSITY MATRIX

In general the system that is being studied is in a mixed state, a state to which a wave
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function cannot be assigned. Mixed states are described as a collection of pure states >,
where each pure state is assigned a weight W(i). The weights are real and by convention
they satisfy the condition:

(2) EiW(i)=1

A discussion of measurement centers about expectation values. For example, the
expectation value of momentum, p, in the pure state Ii > is:

(3) <P(i >-t<i I P I i>

In the system in which each of the pure states is assigned the relative weight W(i), the
measurement is associated with an ensemble average, which in turn is related to the
expectation value through the following expression:

(4) <<P>>-ziW(i) <p(i) >=EiW(i) <iIpl i>

The task of theory is to calculate the ensemble expectation values. At this point we need to
do some arithmetic. We invoke the standard expansion and express the pure state Ii > in
terms of a complete set of linearly independent eigenkets, I m >

(5) J i>=ZmjAm, i m>

In terms of these eigenkets the ensemble average of momentum is rewritten as:

(6) <<P>>=EimnW(i)A*n, iAm, i<nIpIm>

The introduction of the density matrix is a compact way of writing the above expression of a
measurement of the ensemble average value of momentum. We define the elements of the
density matrix as:

(7) Pm, n'"i W (i)A*n, iAm, i

The density matrix with elements given by equation (7) is referred to below as the
density matrix in the 'state' representation, to distinguish it from the density matrix in the
'coordinate' representation discussed below. The ensemble average of momentum
in the state representation is:

(8) <<P>>=ZPm,n<nP m>

Thus if the eigenkets I m > are known, the task of calculating the ensemble average
expectation value involves calculating P m n. We will not discuss the properties of the
density matrix in the state representation,'identified in equation (7) as this is discussed in
most textbooks. Rather, in the discussion that follows we will concentrate on the 'reduced'
density matrix in the 'coordinate' representation. Our description will be within the
framework of the single electron picture.

The density matrix in the coordinate representation is obtained from the density matrix in
the state representation through the following prescriptive ( we confine ourselves to one
space dimension): If om(x,t) is the Schrodinger wave function associated with the eigenstate
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im >, the density matrix in the coordinate representation is defined as:

(9a) IP(x,x',t)-ZPm,n~m(X,t)O*n(X',t)I

With regard to equation (9a) we are faced with the following choices in finding the density
matrix in the coordinate representation:

(1) We can solve the differential equation for pm~,n, and Schrodinger's equation for the
wavefunctions and then obtain the density matrix in the coordinate representation, or

(2) We can solve for the density matrix in the coordinate representation directly, and
ignore the intermediate Schrodinger equation.

In the proposed program because we are dealing with a system of particles we choose the
solve for the density matrix directly, and intend to develop a language that is suitable for
the density matrix.

We point out that many discussions of the density matrix in the coordinate representation
takeoff with the assumption that a matrix transformation can be found that diagonalizes the
density matrix in the 'state' representation. In this case equation (9a) becomes:

(9b) p (x,X',t) =EPm,mOm(X, t) O*m (x,t)

The assumption leading to equation (9b) is not restrictive. While we often invoke this
assumption for initial conditions, the solutions to the problem are not dependent upon it.

The density matrix in the coordinate representation satisfies the equation of motion:

(10) 8p(x,x',t)/at
=(ih/2m) [a 2/ax 2 -a 2/ax , 2 ]p(x,x',t)
-(i/h) [V(x,t)-V(x',t)]p(X,x',t)

We point out that the Wigner function is the Fourier transform of the density matrix. In
one dimension:

(11) fw(P,X)- [i/(27ch) ]fdjp(x+n/2,x-i7/2)exp[-ipi7/h]

Equation (10) is the differential equation of interest. It describes the temporal and spatial
evolution of an ensemble of carriers in the system under investigation. It is the
multiparticle equivalent of Schrodinger's equation, and reduces to the latter when
p(x,x't) =O(x,t)" *(x',t). Rather than seeking solutions to Schrodingers equation for the
wave function, we seek solutions to the equation of motion of the density matrix. It is
discussed in detail as it is unfamiliar to many.

Solutions to equation (10) or the equivalent Wigner function are required for determining
transport in quantum phase based devices. We point out that the differential equation for
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the density matrix in the coordinate representation is a two dimensional differential
equation; yet it describes only one dimensional physics! That is, there are two independent
variab!es x and x'. But recalling that the density matrix is the Fourier transform of the
Wigner function, which is also a function of two variables, x and p, we see that we are not
adding additional concepts that were not in place befure. The issue is interpretation.

The density matrix in the coordinate representation, with the exception of the diagonal
elements, is not an observable. Rather, it appears in the integrand in a two dimensional
integral in which the ensemble average of an operator is calculated. Thus, it appears to
have some of the properties of a correlation function. For example if the wavefunction
represented in equation (9) were the hydrogenic wavefunctions, then the density matrix
would be strong only in the region where there was strong overlap in the wavefunctions.
The same situation occurs here. In the following we will be imposing boundary conditions
on the density matrix and therefore on the 'overlap' at the boundaries. These boundary
conditions would be the mathematical equivalent of constraining the values of position and
momentum on the Wigner function.

While the numerical problem discussed above is a two dimensional problem the diagonal
components of the density matrix are the observables and represent the ensemble average
of the density of the system. In this section we will illustrate the calculations of the diagonal
components, extracting these results from the more general two dimensional solution
discussed in detail below. We must point out some features of the solutions that are
quantum based and have been known and discussed for well over 50 years. First the Wigner
function which displays the closest connection to the Boltzmann distribution function and is
sometimes referred to as a quantum probability distribution function, can be negative!
Similarly, the density matrix can be negative. However, the density matrix is subject to the
following constraints: Rep (xx') = Rep (x',x); Imp (xx') = -Imp (x',x). Thus the density
matrix along the diagonal is always positive, as is required by the physics. The off-diagonal
elements which control the values of the density matrix on the diagonal, can be negative.
From the density matrix, we can obtain the ensemble expectation values of all observables.
In the discussion that follows we will be interested in three observables: density, current
and energy. We note that expectation values of operators in the coordinate representation
and within the Wigner formulation are written, respectively, as (we display this for the
momentum operator):

(12) <<p>>=fdxdx,<xIplx>p(x,x,,t)

(13) <<P>>=dxdfw(x,p,t)p

All of the situations of interest involving a detailed comparison of experiment with theory,
as well as a prediction of the operation of devices and their dependence on material
parameters require that the solutions obtained be coupled to Poisson's equation and that
they be obtained at finite as well as zero bias. For one aspect of the study, namely that
associated with the moments of the Wigner equation, this was done. The studies with the
density matrix are new. Poisson's equation has not yet been coupled to the density matrix
equation, nor are the results at finite bias. All of this is currently taking place, and will be
continued during the proposed follow-on study.

In the next section we extract part of the full density matrix solution and display only the
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solutions along the diagonal. A discussion of the full density matrix solution occupies the
bulk of this document and is supplemented with a number of analytical discussions.
Further, because the initial calculation are for zero bias, although one uniform density
solution was for a finite bias, the time dependent solutions are a consequence of a strong
perturbation of a steady state solution.

THE DENSITY DISTRIBUTION AS OBTAINED FROM
THE DENSITY MATRIX FOR DIFFERENT CONFIGURATIONS

All of the situations of interest involve transport in one dimension. This requires
that we solve the full two dimensional equation of motion of the density matrix. Recall
that the second dimension is related to the momentum component in the Wigner
formulation. In this section we show results only for the diagonal element. The full two
dimensional solutions are discussed below.

We point out that if we were interested only in time independent solutions it would be
possible to obtain them from time independent solutions to Schrodinger's equation. The
goals of most of these initial calculations was:

(1) to test the numerical algorithms,

(2) to explore the time dependent behavior to steady state, and

(3) to explore the nature of the boundary conditions.

TIME INDEPENDENT FREE CARRIER SOLUTION

For the free carrier the wavefunction appearing in the density matrix, assuming that we are
dealing with equation (9b) is ol.exp[i(kx-ot). Along the diagonal the free particle density is
constant and the density matrix in the coordinate representation is constant. As shown
later, the off-diagonal elements are dependent upon x and x'.

CARRIERS AND A POTENTIAL BARRIER

The standard textbook problem of a quantumn mechanical potential barrier is that of a
particle of momentum k incident upon the barrier. The resulting textbook problem
proceeds to examine the reflection coefficient and the transmission coefficient and the
resulting probability of transmission through the barrier.

The zero bias transient problem we study here is as follows: At time t = 0, a uniform density
of electrons is created in a structure containing a symmetrically placed barrier. The
question we ask is : How do the carriers approach equilibrium?

After the initial transient the problem becomes that of a stream of particles incident upon
a barrier. If we were interested only in the steady state solution to the problem then we
need not solve the equation of motion of the density matrix. Schrodinger's equation would
be sufficient. The time dependent multiparticle problem requires the solution to the
density matrix. For the transient solution our attention was focused on the dynamics of
tunnelling and the role of the device boundaries on the dynamics of the carriers. In

-8-



addition some of the cases chosen were directed toward testing the robustness of the
numerical algorithm.

The problem here corresponded to tracking the time evolution of a uniform distribution of
carriers established in a region that included a potential barrier. The carriers could be
placed in the device optically. However, no features of the carrier generation was
considered, nor were holes introduced into the discussion. Thus at time t = 0. the system
consisted of a uniform distribution of carriers plus a potential barrier, The subsequent
physics calls for the carriers to tunnel out of the barrier and propagate toward the
boundaries of the device. The structure chosen for this study was a 3000A long GaAs
element with a symmetrically placed potential barrier of 50mev height, and with a width of
200A. After approximately 15fs, much of the excess carriers in the barrier tunnel out of the
barrier and begin to accumulate in the vicinity of the barrier. These carriers propagate
toward the physical boundaries of the device, where they are subsequently reflected, and
propagate back toward the barrier. In this study, however, because the physical boundaries
were far removed from the potential barrier, this was not an issue for much of the
calculation.

Reflection off the device boundary is a consequence of the imposed boundary conditions.
We have currently implemented a set of boundary conditions that will allow for tcal
transmission through the device boundaries. Any realistic situation would involve :lifferent
percentages of transmitting and reflection physical boundaries.

The distribution of density in the well 150fs after the start of the calculation is displayed in
figure (2), along with a sketch of the barrier structure. We call atte-,:on to the negligible
space charge within the barrier and the accumulation of carriers on either side of the
barrier.

CARRIERS AND A POTENTIAL WELL

This situation is also a classical text textbook problem, in which a particle of momentum k is
incident upon a potential well. Here either bound states or scattering states are considered,
and the probability of transmission calculated. For the problem studied, we dealt with a
situation that is similar to that of the potential barrier, namely:

The zero bias transient problem we study here is as follows: At time t = 0, a uniform density
of electrons is created in a structure containing a symmetrically' placed well. The question
we ask is: How do the carriers approach equilibrium?

As in the potential barrier a uniform distribution of carriers was placed in a structure that
consisted of 200A well, 50mev deep, centrally placed in a structure that was 3000 A thick.
As expected there was a considerable accumulation of carriers in the well, with the massive
rearrangement occurring within the first 50 fs after the start of the calculation. What was
also observed was that the carrier density in the well was always time dependent. And these
calculations were carrier out for up to 750 fs. The nature of these oscillations was examined.
Here we note that standard quantum mechanics teaches that for a well with a single
descrete energy level, that the carrier density will be highest in the center of the well. For
one with two levels there will be lobes that peak near the boundaries of the well.
Successively higher levels will result in a different distribution of peaks. For a finite
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number of levels, the time dependent interaction of these levels is represented as waves
bouncing off these boundaries. Our preliminary analysis indicates that we are observing
internal time dependent reflection. Indeed further evidence for these internal reflection
was obtained by repeating these calculations with a shallower well of depth 30 mev. The
effects of the sidelobes was reduced. Our calculations appear to be the first to expose
numerically the wave nature of the charge distribution in potential wells. We point out
that as a consequence of this time dependence it is SRA's opinion that it should be possible
to pump a potential well, or possibly a double barrier diode, with a signal about the
resonant frequency and observe a significant frequency dependent variation in the output.

The distribution of charge in the well at 30 f- after the start cf the calculation is displayed in
figure 3, as is a sketch of the well. Note the accumulation of carriers in the center, and the
appearance of some local accumulation of charge at the boundaries of the well. The
subsequent time dependence of this result will be explored more fully in the later sections.

CARRIERS AND A DOUBLE BARRIER TUNNELING POTENTIAL

This particular structure was the most complicated of all. It consisted of a 650 A structure,
which inciuded two 230 mev ootential bai-iers each 50 A thick, separa'ed by 50 A. While
this is a standard AlGaAs/GaAs configuration, and is one that was studied at SRA using the
moments of the Wigner function, this structure introduces significant proximity issues,
particularly as the physical boundary was only 200 A away from the tunnclling structure.

The initial condition for this structure was as for the above two problems, i.e., the zero bias
transient problem we studied is as follows: At time t = 0, a uniform density of electrons is
created in a structure containing a symmetrically placed double barrier. The question we
ask is : How do the carriers approach equilibrium?

Initially there was a uniform distribution of carriers in the device. The subsequent time
development displays the tunnelling of these carriers out of the barriers toward both the
physical boundaries and toward the region interior to the barriers. Thus it appears that a
steady solution would show the presence of a local accumulation of carriers between the
barriers in the absence of any bias. This result would be consiste.it with that obtained by
workers at SRA using the moments of the Wigner distributions function [19]. The situation
when the tunnel barrier A,: in clo-- proximity to the boundary shows that the possibility of
reflection off the physical boundary has a significant effect on the distribution of charge
within the well. For example, it is found that as the charge in the well is decreasing, there is
an accompanying charge packet that travels to the physical boundary. When this wave is
reflected off the physical boundary and propagates toward the double barrier structure, the
charge distribution in the well starts to increase. This repeats periodically.

We have begun to alter the boundary condition, to allow all of the waves that strike the
physical boundary to be transmitted across the boundary. This is a form of dissipation in
that the solutions are no longer time reversible. Preliminary results indicate that the
oscillation in the well in significantly decreased. While these new studies are preliminary,
the i-idicate that proximity effects and conditions at the contacts will exert a first order
effect on the behavior of quantum phase based devices.

Figure 4a displays the distribution of charge in the double barrier structure 'Ofs after the
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start of the calculation. We direct attention to the fact that during this short time duration,
the carriers are removed from the double barrier and accumulate between the barrier and
outside of the barriers. While we note that the density of carriers in the well is below that
of the density outside of the well, the situation is reversed at later times. For these
boundary conditions, when the excess carriers reaches the boundary, these are absorbed,
rather than reflected by the boundary. The situation at 50 fs is displayed in figure 4b.

We also point out that the standard approach to examining transport in resonant tunneling
structures, namely the Tsu-Esaki approach, is to ignore the time dependent influence of the
contact boundary, as well as the time dependence of the wavefunctions within the interior
of the double barrier diode. The result is that the predicted terminal characteristics are
likely to be incorrect. It is therefore not surprising that the agreement between theory and
experiment is as poor as it currently is! We now turn to the more general argument.

EXAMPLES OF THE DENSITY MATRIX AND THE WIGNER FUNCTION

We now consider several examples of the density matrix. The first example is that of a time
independent free carrier.

TIME INDEPENDENT FREE CARRIER

For this case the density matrix in the 'state' representation is a classical Boltzmann
distribution:

(14) Pm,n=Pm 6m,n=[exp(-Em/kbT) ]5m,n/Elexp(-EI/kbT)

For eigenstates representing momentum, E = ri 2 k2 /2m. In one dimension the wavefunction
is a one dimensional plane wave solution. The density matrix in the coordinate representa-
tion is obtained by replacing the summation by an integral:

(15a) p(x,x')=(2jir)p(,/L)fdkexp[ (- 2k 2/2mkbT)+ik(x-x')]
=(l/L)exp[-mkbT(x-x') 2 /2 h 2)

or:

where:

(16) . (X-X')/2

and

(17) 12.h 2/[2mkbT]

is the square of the thermal deBroglie wavelength. The density matrix, as given by equation
(15b) is constant along lines of constant (; that is along lines that are either parallel to the
line x = x' or are on the diagonal. The density matrix varies as a Gaussian in a direction
normal to the this line. The free particle density matrix in the coordinate representation is
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displayed in figure (5), for GaAs parameters. In this diagram abscissa and ordinates are x
and x', respectively. The first point we note is that the density matrix for the free particle is
real. The second point is that for distances " > ), the density matrix becomes negligibly
small. Since the expectation values of the operators involve an integration over all values of
x and x' the implication is that only those operators that are confined to within a thermal
deBroglie wavelength will have an impact on the ensemble average expectation value. We
will see later which these operators are. We note that the thermal deBroglie wavelength
increases as the temperature decreases. In the figures we suppress the dependence of
P (xx') on the distance L.

The Wigner function for the free particle solution is the classical Boltzmann distribution:

(18) fw(x,p)=((i/[L(2mkbT)] }exp[-p2/(2mkbT)]

The second example is that of carriers confined to a box of length L.

CARRIERS CONFINED TO A BOX OF LENGTH L

For this case the wave functions are subject to the conditions 0 (x = 0) = 0 (x = L) = 0. With
box normalization such that < x Ix > = 1, the solutions are:

(19a) 0 (x)=J (2/L) sin (n x/L)
En=n 2rh 22/ (2mL 2 )

and:

(19b) Ip(x,x')=(2/L)E[exp-En/kT ]{sin[nrx/L]sin[ntx'/L])I

We do not have a closed form solution to this equation, but we note that this solution is also
real. We also note that it is not possible to replace the sum by an integral as we did for the
free particle case, we will lose the constraint at x =x' = L.

The third case we consider is that of free carrier subject to a constant force.

FREE CARRIER SUBJECT TO A CONSTANT FORCE

Classical physics teaches that for such a case the density is unchanged, and the time
derivative of the momentum is constant. In this case with V(x,t) = -Fx, the solution is (after
lafrate [20]):

(20) 1p(x,x',t)=po(x,x')exp[i2Ft/h]I

where po(xx') designates the free particle solution in the absence of any applied potential.
The key issue associated with the above solution is that it contains imaginary as well as real
components in the solution. The time evolution of the density matrix is shown in figure 6.
In displaying the results we recognize that the density matrix for the free carrier is
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dependent only on the variable C. Thus to examine the time evolution of the free carrier
density matrix in the coordinate representation we need only examine the projection of the
density matrix onto the principle off-diagonal element.

We see that the entire solution oscillates in time with a frequency determined by the
applied force and the spatial variable C, except on the diagonal where the density is
constant. The oscillation frequency is greatest at the edge of the computational domain.
The above implies that 'correlations' between points x and x' as represented by the density
matrix, varies in time. Indeed, examining figure 6, we see that the density matrix, which
was originally Gaussian about the diagonal, approaches, in time, a delta function about the
origin. The solution will periodically oscillate between a Gaussian and a delta function.
Further, we see that the imaginary part of the density matrix is subject to inversion
symmetry about the origin. (Any apparent absence of inversion symmetry is 'artist'
dependent.)

The Wigner function for this case is:

(21) fw(x,p)=[i/[L(27mkbT) ]exp[-(p-Ft/h)2/(2mkbT)]

This result states that the Wigner function, is displaced by an amount, Ft/rz, and becomes
strongly peaked about this point with increasing time. The mean momentum of this system
is always, Ft/rz. Thus, at least in this case, the peaking of the density matrix about the
diagonal appears to be related to the peaking of the Wigner function about the momentum
Ft/tz. Wh, ther this result is isolated or is a result of a general nature, awaits further study.

THE CURRENT MATRIX EQUATION
THE ENERGY MATRIX EQUATION

THE CONSERVATION LAWS IN MATRIX FORM

Seeking solutions to the density matrix, without actually solving the equation of motion of
the density matrix, is an interesting exercise, and provides some insight into the general
character of the solution, but it is of very limited use. To study real physical problems we
need to solve the density matrix, and the solutions must provide a transparent means of
discussing the physics. The algorithms we use to solve the density matrix are direct and are
discussed below.

The discussion in this section is concerned with the means by Which we will interpret the
numerical results. Some simple illustrations are included. For purposes of interpretation
we introduce a change variables. We begin by recognizing that the second derivative
operators in equation (10) can be expressed as follows:

(22) 8 2 /8X 2 -8 2 /X1 2 = [8/8X-a1X'][818X+8/8'X]

Then with the transformation:

(23) n=(x+x')/2, C=(x-x')/2

a l181alax+8 /ax'
ala=alax-alax,
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we find:

(24) a2/ax2-a2/x,2 = [a/a][a/a]

and the equation of motion of the density matrix becomes:

(25) a P (17+( 1- ,t)/Pat
=(ih/2m)[ / a p(+ ,- ,t
-(i/h ) [V (V+ t) -V (17-C ,t)IP (17+ , -7 ,t)

We now introduce a number of new terms. But we first recognize that the diagonal

component of the density matrix is the density:

(26) P(x)=p(x,X)

We will need to define a current and energy matrix in the coordinate representation.
These matricies arise from the expression for the momentum and energy operators in
the coordinate representation [21]. In terms of the operators we define a current density
matrix in the coordinate representation, j(x,x').

The elements of the current density matrix are:

(27a) j(x,x,)=-(h/2mi)[ap(x,x")/ax,-ap(x,x,)/ax]

or:

(27b) j (x, x')(h/2mi) a p (q +( , - ) / l

where the time dependence is suppressed. Note that since p (x,x') = Rep (xx') + limp (x,x'),
and since j(x,x') = Rej(x,x') + ilmj(x,x'), Rej(x,x') is obtained from Imp (x,x') and Imj(xx') is
obtained from Rep (xx').

For the free particle in the absence of any applied field the current density matrix is zero
everywhere.

For the free particle subject to an applied field the current defnsity matrix is

(28) j (x,x')=[ (h/2mi)aPo(j7+f,i7- ) /aC]+poFt/m

Along the diagonal j(x,x) = p (x)Ft/m, which is the classical result.

We now introduce energy density matrix [21]. The elements of the energy density matrix

are:

(29a) E(xx') =-(h 2/8m)[a 2plax 2 -2a 2 plaXax'+ a 2plax'2]

or:
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29b) jE(x,x')=-(h2/8m)2p/a2j

Here unlike the current density matrix, the real part of the energy density matrix, ReE(xx')
is expressed in terms of Rep (xx') and the imaginary part of the energy density matrix,
ImE(x,x'), is expressed in terms of Imp (x,x').

It is important to note that it is, in principle, possible to solve the equation of motion of the
density matrix without any information concerning the current and energy matricies. This
would not violate any mathematical precepts. It will, however, be necessary in the course of
examining the physics of the problem to constrain the boundary conditions such that
specific physical properties related to current and energy are included. This will be
apparent in the discussion below.

It is a direct matter to compute the energy matrix for the free particle in the absence of any
applied field. It is:

(30) E(x,x')=[(kbT/2)+2m(CkbT/h ) 2 ]p(X,x " )

Along the diagonal:

(31) E (X, X) = (kbT/2) p (X)

which is what is expected on the basis of equipartition. For the time dependent case of a free
particle in an applied field:

(32) E(x ,x')=-(r 2 /2m)exp[i2Ft/h]
X [a2 po/8a2+(4Ft/h)Opo/8(+(4Ft/h) 2po]

and along the diagonal:

(33) E(x,x)=[ (kbT/2)+(hFt) 2/2mlp(x)

The energy increases with the square of time as in classical physics.

Finally, the energy matrix for the particle in the box is:

(35) E(x,x')=(2/L)Z[exp-En/kT]En
x(sin[nix/L]sin[n x'/L]+cos [nrx/L]cos[nx'/L))

and along the diagonal:

(36) E(x,x)=(2/L)Z(exp-En/kT]E n

Unlike the results for the free particle in the absence and presence of an applied field the
energy matrix for the particle in a box, has no classical counterpart. We now introduce
conservation laws.

The matrix form of the equation of continuity: In term of the elements of the current
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matrix, the equation of motion of the density matrix can be rewritten as follows:

(37) a ( + 17- ) t+aj (71+( 17-C )l/8=(1/if?) [V(7+ ) -V(T/-( H ]P (fl+ ,T/-f)

Equation (37) teaches that the density matrix equation conserves particles. Further, along
the diagonal, " = 0, the above differential equation is real and yields the well known
continuity equation:

(38) ap(x)/at+aj(x)/ax=o.

We next consider the matrix form of the force balance equation. To do this we take
derivatives of the density matrix equation (25) with respect to .We find, with
j(x,x') = p(x,x')/m:

(39) ap(x,x' )/8t+28E(x,x' )/aq=
-(1/2)p (x,x') a[V(x)-V(x,) ]/8(-(i/h) (V(x)-V(x') ]p(x,x')

Equation (37) is a generalized matrix form of Newton's Law. We point out, however,
that if the density matrix is real, the real part of the above equations reduces to:

(40) 2aE(x,x')/a+(1/2)p(x,x,)a[V(x)-V(x,))/a=o,

which as we will see is consistent, along the diagonal and under special restrictions, with the
time independent Schrodinger equation. Before doing this we note that:

(41) iv, ] V(7()- 1- V 7 )+'(7-

where the prime denotes differentiation with respect to the argument of the respective
functions. Then without confining the discussion to the real part of equation (39), we find
that along the diagonal we are able to retrieve an ostensibly classical result:

(42) ap(x,x)/at+2aE(x,x)/ax=-p(x,x)av(x)/ax

Since p(x,x') and E(xx') are density dependent quantities, equation (42) is Newton's Law
for particle density.

Is there any quantum mechanics in equations (38) and (42)? For the case of the free
particle all of the quantum mechanical treatment yields only the classical result. Thus in
the absence of any quantum mechanical constraints the above analysis is the mathematical
equivalent of opening a peanut shell with a sledge hammer. But there is quantum
mechanics, and we demonstrate this by example. Consider the case where the density
matrix is real. In addition assume for simplicity that we can break up the density
matrix as p(x,x') =j p(x)J p (x'), a situation that is always true for a pure state. Then along
the diagonal:

(43) E(x,x)=-(h2 18m)2(jpa2 Jplax2 -(aJp/ax) 2 )

Introducing the quantum potential [22], discussed above:
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(44) Q--[h 2/2m] [llJp]a 2 jp/ X 2

it is a direct matter to show that a E(x)/a x = (pl2 ) Q/a x. In this case, equation (41)

(45) a(Q+V)/ax=O.

or:

(46) -[h 2/2m]6 2jp/x 2 +Vjp=Constant x Jp

which is Schrodinger's equation for a real wavefunction. We are now at the point were we
can begin to discuss the development of boundary conditions to the solution of the equation
of motion of the density matrix.

BOUNDARY CONDITIONS AND SOLUTIONS

The purpose in illustrating the importance of boundary condition is two-fold:

First, because the initial discussion of Frensley [18] was incorrect, and may have hampered
the introduction of the density matrix as a viable means of solving transport problems, it is
important to establish that conditions can be applied that permit solutions.

Second, it is necessary to connect the boundary conditions to those of others as well as
to physical boundary conditions. We illustrate this only for the simple case of the
standard wave equation. The discussion that follows can be found in textbooks.

We consider the simple case of a time independent problem with zero applied potential.
For this case the density matrix equation reduces to the standard wave equation:

(47) [a 2 /ax 2 -a 2 /ax, 2 ]p(x,x,)=o

The following conditions will yield a unique solution:

(48) p(x,O)=az(x)
ap (x, x )/ax, IX ,== (x)
p (0, X I) =/j(X
p (L,x')--v (x')

Because each of the above conditions is related to the Fourier transform in momentum
space of the Wigner function, the above conditions are equivalent to momentum boundary
conditions on the Wigner function. Thus if the Wigner function specified the distribution of
momentum on the boundaries, the above conditions would reflect this conditions. Thus,
physics is contained in the boundary conditions.

The domain of the solution is:
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L

0 L
X

Using the variable changes of equation (23), we can write the general solution of the wave
equation as:

(49) 1p(x ' )=f()+g( )1

Thus two linearly independent solutions are required for the wave equation. Frensley's [18]
mistake was that he imposed boundary conditions on only one of the solutions. Thus his
general solution was not unique and he was not able to obtain a computationally converged
solution.

Returning to the conditions on the differential equation, the boundary and initial conditions
can be reexpressed as:

(50) a'(X)=f(X)+g(x)
O6(x)=f' (x)-g' (x)
p (x')=f(x'/2)+g(-x'/2)
v (x')=f((L+x' )/2)+g((L-x' )/2)

where the prime on the functions denote derivatives. It is important to recognize that
the range of a and f is 0 < x < L. Now it is direct that:

(51) al (X)=[f'(X/2)+g' (x/2) J/2

Therefore:

(52) f' (x/2) =hI' (x) +k,6 (x)g' (X/ 2) = ke' (X) - kj (X)

Integrating:
(53) f (x/2) =kc(x) +OfX (f)d

g(x/2) = z (X) - fx, (C) dc

and

(54) p(xx1) =7Z(x+xI)+ka (xxI)+kx-xSx+x'O(CdE

It is important to recognize that both a and f are defined in the range 0 < x < L Thus
equation (54) defines solutions to the density matrix, but because of this constraint these

-18-



solutions are restricted to the range of values of p (x,x') to triangle 'I' of the accompanying
figure. Within this triangle we can illustrate some features of the solution, where we note
that there is as yet no explicit dependence of the solution on the vertical boundary
conditions p (x') and v (x'). We also note that along the bounding diagonal, x =x'( or " 0),
and off diagonal elements, x + x' = L (or L = 2q), the solutions are, respectively:

(55) p (x, x) =ka (2x) +ka (0) + oj 2x6 (C) d

(56) p (x, L-x) =1. (L) +e (2x-L) +12 xLPL ( ) d

We now consider the solution in the interior of the computation domain. We consider the
domain as before:

L

x1 II IV

0 L

x

In the above figure, the line segments DC and AB are parallel, as are the line segments AD
and BC. These line segments are segments of characteristic lines [ ]. We recognize that the
function f(q ) is constant along the off-diagonal; while the function g(C) is constant along
the diagonal. For purposes of illustration:

along the line segment AB, g(") = a;
along the line segment BC, f(Y7 ) = b;
along the line segment CD, g(C) = c;
along the line segment DA, f(q1) = d.

Thus at the points A,B,C,D:

(57) p(A)=a+d
p (B) =a+b
p (C) =c+b
p (D)=c+d

and:

(58) p (A)+p (C)=p (B)+p (D)

For a point c(x,x') in domain II defined by 0< x- and x-x'< < -x
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(59) A = [X'X X,.X]

X'+X X +X]

C - (x,x')

D (0, x'-x)

X'+X
1 1

(60) p(c) = /'(x'-x) + - [ a (x'+x)-(x'-x)] + -
2 2

X' -X

Thus with a function boundary on the left hand side of the domain we can find a complete
solution to the density matrix in region II. In a similar manner we can find a solution
everywhere in region IV, based upon the conditions on the right hand boundary.

We note that in constructing solutions in region II, these solutions were based upon the
solutions on the lines bounding region II. Thus for the solutions in region IV, these will be
based upon solutions on the triangular boundaries of the region. For solutions in region III,
we can construct solutions from three points providing one of the points is the intersection
of the principle diagonal and off-diagonal line segments.

We need not necessarily deal with the above conditions alone, we could choose to replace

the conditions of equation (48) with:

(61) p(X,O)=a(x)ap (x,x,)/ax, Ix,=o+ap (x,x,)/axl ,O=(x)
p(O,x')=/ (x')
p (L,x')=v, (x')

and a unique solution would also be obtained.

The task of the program to which we have been involved requires that we find a solution to
the time dependent problem that is consistent with the solutions to the time independent
problem. We have achieved success in this area. We illustrate this further with an expans-
ion of the results for the solution to the density matrix in the potential well, discussed
earlier.
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TWO DIMENSIONAL TIME DEPENDENT SOLUTION TO THE
DENSITY MATRIX FOR CARRIERS AND A POTENTIAL WELL

This discussion is an extension of that in connection with figure 3. Here in figure 7 and 8 we
present a sequence of projections of the real and imaginary part of the density matrix at
successive instants of time. In figure 7, we display the real part of the density matrix as a
function of x and x'. At a time t = 15fs, along the diagonal where x = x' we see a uniform
distribution of carriers approaching the boundary and a large accumulation of carriers
within the well. During the early time phase there is the development of the carrier
reflection off the interior of the potential well, figures 7b through 7d. At a later time
with larger time increments we begin to see the presence of structure in the solution along
the off diagonal in the vicinity of the potential well. In time the wave propagates toward the
edge of the domain and reaches it at a time of approximately 500 fs. Further increases in
time show the evolution of the charge distribution, but at all times it remains dominated by
the increase in charge in the potential well.

TWO DIMENSIONAL TIME DEPENDENT SOLUTION TO THE DENSITY
MATRIX FOR THE DOUBLE BARRIER TUNNELING STRUCTURE

This calculation which is an extension of that discussed in connection with figure 4 was
initiated approximately one week before the start of this document. In figure 8 we display
the real part of the density matrix at three instants of time. In figure 8a, the presence of the
double barrier results in an accumulation of charge between the barriers as well as charge
on either side of the barrier. The display along the diagonal, illustrated in figure 4, is the
same as that in figure 8. We also note the structure along the off-diagonal. At a time of 30
fs, the propagating wave reaches the boundary, and we see an apparent peak in the charge
at the center. In figure 8c we see an apparent decrease in the charge in the well and an
increase in the charge at the bounding edges.

Figure 9 displays the distribution of velocity for this structure. At 10fs, figure 9a, the
velocity at the boundaries, along the diagonal is zero, and reflects the fact that the
propagating charge disturbance has not yet reached the boundary. Note that the velocity is
the velocity flux, or current. At time t = 30 fs the disturbance has reached the boundary as
indicated by the locally higher values of velocity along the diagonal near the edges of the
structure. At 60 fs the velocity is negative along the left hand boundary indicating that the
waves have been reflected off the boundary.

The velocity is obtained from the derivative of the imaginary part of the density matrix in
the off diagonal direction. The imaginary part of the density matrix is displayed in figure
10. The value of the imaginary part of the density matrix at 10 fs is displayed in figure 10a.
We see that it is zero near the edges, indicating again that the disturbance has not yet
reached the boundary. At 30 fs, the values of the imaginary part of the density matrix
indicate again the propagating disturbance. Figure 10c shows the disturbance at a later
time. The important point to note here is that the peaks have altered position indicating
that the velocity has changed sign.

In figure 11 we display the real part of the energy matrix. Along the diagonal and in steady
state the potential plus E(x,x) is a constant. These calculations have not reached a steady
state. The calculations point to the fact that during the transient the energy appears to be
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greater where the density is highest, and that at 30 fs when the carriers are near the edge of
the boundaries there is a large kinetic energy component.

Finally, we have begun to explore the role of the boundary on the results. In a set of
calculations we began to let a certain fraction of the carriers be transmitted through the
device boundaries. The result of this calculation at 60fs, display a more isolated
distribution of charge in the well. This clearly is an avenue of research.

3. RECOMMENDATIONS FOR FUTURE WORK

The above discussion sets the stage for the type of research that needs to be performed in
the future. The density matrix offers an excellent means of studying the physics of quantum
phase based devices. It is can be modified:

(1) to treat heterostructures,

(2) include Poisson's equation,

(3) treat transient transport in a variety of different III-V material configurations,

(4) and treat transient transport in silicon and germanium heterostructures.

It is capable of studying multiple barrier diodes (more than two), and of including
dissipation. While we are currently treating dissipation at the boundaries, dissipation
can be treated, phenomenologically through a relaxation time approximation. Here we
would replace the left hand side of the governing partial differential equation (10) with the
terms:

(62) ap(x,x",t)/at+p(x,x",t) /r

Thus it is capable of treating the device physics of one dimensional structures.

To deal with the device physics of two-dimensional structures, such as A-B devices, requires
that a (4 + 1) dimensional partial differential equation be solved. This equation is:

(63) ap (r',',t) /at
=(ih/2m) [a2/ar2-a2/ar , 2 ] p ( r , r ' , t )

-(i/h) [V(r,t)-V(r',t) ]p(r,r',t)

While workers at SRA are confident in their ability to develop a transient, four dimensional
solution algorithm for such a system of equations, it is apparent that such a procedure
would be computationally intensive, and several stages would be required for implementing
this.
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Figure 1. (a) d.c. and (b) pulsed sampling scope measurements
of the current voltage characteristics for a gallium
arsenide FET. [Ref. ].
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Figure 2. Diagonal component of the density matrix, or the
carrier density, at 150 f a, for a distribution of
carriers interacting with a potential barrier.
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Figure 3. Diagonal component of the density matrix, or the
carrier density, at 30 fs, for a distribution of
carriers interacting with a potential well.
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Figure 4a. Diagonal component of the density matrix, or the carrier
density, at 10 fs, for a distribution of carriers
interacting with a double barrier tunneling structure.
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XI X

Figure 5a. Free barrier density matrix in the coordinate
representation corresponding to equation 15b.
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bx

Figure 5b. Carrier density matrix in the coordinate representation
corresponding to equation 15b. Figure 5b is a different
projection of Figure 5a.
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Figure 6a. Projection of Rep(x,xt~t) at different times for V(x,t) -Tx
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Figure 6b. Projection of Imp(x,x',t) at different times for V(x,t) -
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Figure 7a. Rep(x,x',t) for the potential well of Figure 3. t - 15 fe.
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Figure 7b. Rep(x,x',t - 30 fs).
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Figure 7C. ReP(XX',t -60 fs).
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Figure 7d. Rep(x,x',t - 75 fs).
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Figure 7e. Rep(x~x',t - 150fs
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Figure 7f. Rep(x,x',t - 225 fs).
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Figure 7g. Rep(x,x',t - 300 fs).
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Figure 7h. Rep(xfxv,t - 375 fs).
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Figure 8a. Rep(x,xt,t) for the double barrier diode at t m 10 fs.
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Figure 8b. Rep(x,x',t - 30 fa).
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Figure 8c. Rep(x,x',t -60 fs).
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Figure 9a. Rej(x,x',t) -p(x,x',t)V(x,x',t) at t -10 fs. Positive

velocity is in the direction of the arrows.
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Figure 9b. Rej(x,x',t - 30 fs).
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Figure 9c. Rej(x,x',t - 60 fs).
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Figure 10a. Irp(x,x',t) at t - 10 fs.
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Figure 10b. Imp(x,x',t -30 f3).
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Figure 10c. Imp(x,x',t - 60 fs).
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Figure lla. ReE(x,x',t) at t -10 fs.
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Figure lib. ReE(xx',t - 30 fa).

- 52 -



Figure 11c. ReE(X,X',t -60 f3).
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Figure 12. Rep(x,x',t) for the structure of Figure 4 with

partially transmitting device boundaries.
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P.O. Box 1058

Glastonbury, Connecticut 06033-6058 USA

(203) 659-0333

INTRODUCTION

It is arguable that the history of gallium semiconductor devices, from the

early sixties to the present time, fits into three groups. First there was

the experimental work of Gunn [1] demonstrating the generation of sustained

oscillations upon application of a sufficiently large dc bias. This work

opened up the possibility of fabricating bulk microwave and millimeter wave

devices, and hastened additional and intense studies of the properties of

compound semiconductor devices. Second, there was the study of Ruch (2] whose

results suggested that the transient, or non-steady state aspects of

semiconductor transport, would improve the speed of devices by almost an order

of magnitude. This, of course is the argument behind much of the move toward

submicron and ultrasubmicron structures. The third era, is the one we are

presently in, and involves the incorporation of gallium arsenide into material

engineered highly complex structures, some of which have provided remarkable

millimeter wave characteristics, e.g., the pseudo-morphic HEMT [3]. Much of

this book is concerned with this third era, and as such we will only briefly

touch upon it. Rather, in this chapter we will try to present a road map of

the consequences of using compound semiconductors for device applications,

using gallium arsenide as the paradigm example.

The band structure of gallium arsenide is familiar to most, and is displayed

in Fig. 1. It is a direct band gap material. The minimum in the conduction
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band is at F with relevant subsidiary conduction band minima at L and X.

The curvature at r is such chat the effective mass of the r-valley

iL6

4L6 11-7

2oe

0 P

> 5L6 X7'
z

-6

-8"

L Al r A X U.K I: r

WAVE VECTOR k

FIGURE 1: Band structure of the semiconductor gallium arsenide [4).

is lower than that of the next two adjacent subsidiary L- and X-valleys. For

the valence band the two valleys of significance are those associated with the

light and heavy holes. We will concentrate on transport contributions from

these five valleys.

In equilibrium, the relative population of electrons in the valleys is

dependent upon the density of available states and the energy separation, e.g.:

no - H(mrlmL)3/2 expA/kT (1)

'where nr and nL denote the equilibrium density of the r- and L-valley
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carriers, mr and mL are their effective masses, and A is the F-L
energy separation. Thus, in equilibrium virtually all of the electrons of
interest are in the r-valley. For the holes, the valleys are degenerate.

Gallium arsenide is a compound semiconductor. At low values of electric field
apart from carrier-carrier scattering, there are three important scattering
mechanisms: polar optical phonon scattering, acoustic phonon scattering and
impurity scattering. For r-valley electrons the contribution to the
momentum scattering rate from polar optical phonons is approximately two
orders of magnitude larger than that of the acoustic phonon. Since, with
regard to mobility, scattering rates are additive, the polar optical phonon is
the dominant scatterer. Ideal room temperature electron mobilities are in the
range of 8000 to 9000 cm2/vsec. For the subsidiary valleys the effective
masses of the carriers are much larger than that of the r-valley and the
relative contribution of the acoustic phonon increases. Nevertheless, the
polar phonon dominates the transport. For holes, the situation is mixed with
the dominant scattering being polar and nonpolar deformation potential
coupling. For momentum scattering the nonpolar deformation potential

scattering dominates.

At high values of electric field and for electrons, nonpolar phonons enter the
picture, intervalley transfer from r to L takes place, and the situation
becomes complex. For example, the spatially uniform, field dependent velocity
characteristics of gallium arsenide, ignoring electron-hole interaction
displays a region of negative differential mobility, as shown in Fig. 2, where
at values of field in excess of 3 kv/cm the mean carrier velocity begins to
decrease with increasing electric field. This is an unusual situation and it
is perhaps important to recognize that the mean electron velocity of a given
species of carrier, assuming a parabolic band, is not decreasing with
increasing electric field. Rather the numbers of high mobility electrons are
decreasing, due to transfer to the subsidiary larger effective mass valleys.

The situation with holes is different. Here the dominant transport is through
the heavy hole. Interband hole scattering is always present even at very low
fields, however the relative population is fixed through the ratio of the
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FIGURE 2: Field dependent electron mean velocity for gallium arsenide [5].
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FIGURE 3: Field dependent hole mean velocity for gallium arsenide {6].
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effective masses, and the existence of a dc negative conductance for holes, on

the basis of available data is ruled out. The field dependence of the mean

hole velocity, ignoring interaction with the electrons, is displayed in Fig.

3, and there are two important features of note: First, there is the extremely

low mobility of the holes at low field values. Second, there is the saturated

drift velocity, which is expected to be higher than that of electrons at high

fields. We note there is no hard data on the high field carrier velocity of

holes in gallium arsenide.

Calculations of the type displayed in Figs. 2 and 3 have been described by

many workers and are routinely incorporated into simulation codes. Of more

recent interest, because of mixed conduction heterostructure devices, are the

modifications that may be expected when electron-hole scattering occurs.

2

n/ 1)ITC -3

0

o -5xI0 c

n = I17 -3

O I I

o WITHOUT e-h T = 3000 K

* WITH e-h

FIGURE 4: Field dependent electron mean velocity for gallium indium arsenide
assuming an interaction with heavy holes [7].
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However, because of the limited number of studies with GaAs. and because of

similarities with other compound semiconductors. results of InGaAs studies are

presented. Additionally, because of experimental work on InGaAs (8], the role

of carrier-carrier scattering has been most extensively studied for that

material. Monte Carlo calculations incorporating electron-hole scattering are

displayed in Fig. 4. The results require some detailed discussion and are

considered later. Here we simply note that the presence of holes leads to

reduction in the low field mobility, but an increased peak carrier velocity.

These intriguing results are also anticipated for GaAs.

The question of interest, is how may we expect the role of the complicated

compound semiconductor band structure to affect the performance of devices.

This is considered next.
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THE ROLE OF BAND STRUCTURE ON THE OPERATION OF ELECTRON DEVICES

In examining the role of band structure on the operation of electron devices

there are several items of immediate interest: the effective mass, the low

field mobility and the direct band gap energy of the binary IlI-V materials,

see Table 1. Additionally, the energy separation of the conduction band

TABLE I

Critical Parameters of Select Compound Semiconductors [9]

Compound Effective Mass Electron Direct Energy
(multiples of Low Field Bandgap
free electron Mobility (ev)
mass at the (cm2/V-s)
conduction
band minima)

GaAs 0.063 (DOS) 9200 1.424

GaP* 0 .25t/0. 911 160 2.78

GaSb 0.042 3750 0.75

InAs 0.0219 33000 0.354

InP 0.079 5370 1.344

InSb 0.0136 77000 0.230

A1As** 0.71 (DOS) 300 .2.98

* The minima in the conduction band are at A-axis near zone boundary.
** The minimum in the conduction band is at X.
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minima to the subsidiary valleys are listed in Table 2.

TABLE 2 (10]
Intervalley Energy Separation

Compound M rx IX

(ev) (ev) (ev)

GaAs .0.34 0.48 0.14

GaP -0.27 -0.39 -0.37

GaSb 0.08 0.37 0.23

InAs 1.27 1.60 0.33

InP 0.63 0.73 0.10

InSb 0.41 0.97 0.56

AlAs -0.15 -0.79 -0.64

Note that of the seven binary materials listed, five are direct band gap

materials, and two, GaP and AlAs are indirect materials. The indirect band

gap materials have the highest effective masses of the group and also the

lowest mobility. For these materials, GaAs, InAs, InP, InSb, possess regions

of negative differential mobility. GaSb, GaP, and AlAs do not. It is perhaps

not surprising that the first four mentioned materials possess a region of

negative differential mobility, nor that the last two materials do not. In

the latter case the minima in energy is associated with a large effective

mass, high density of states energy level. The situation with GaSb is

peculiar. But here, while the effective mass of the r-valley is the

smallest of the three, its closeness in energy to that of the subsidiary

L-valley is such that at low values of field conduction contributions arise

from both the gamma and L-valley, effectively suppressing the contributions of

intervalley transfer to negative differential conductivity.

The presence of a region of bulk negative differential mobility has, as a



major consequence, the possibility of electrical instabilities. These

instabilities manifest themselves either as large signal dipole dominated

oscillations, often referred to as the Gunn effect, or as circuit controlled

oscillations, where the semiconductor behaves electrically as a van der Pol

oscillator. The binary semiconductors GaAs, InP and InAs have exhibited

electrical instabilltes associated with bulk negative differential mobility.

while InSb has also sustained electrical instabilities, the interpretation of

the instability is complicated by the small direct band gap and the

possibility of avalanching at low bias levels.

An additional feature of importance is the intrinsic carrier concentrations of

some of these materials, as shown in Table 3. It is clear that the intrinsic

TABLE 3 [9]
Intrinsic Concentration

Compound n(/cm )

GaAs 2.1x10 6

InAs 1.3xlOS

InSb 2.0x10 16

InP 1.2x108

concentration of InAs and InSb make them unsuitable for a unipolar source.

Indeed all transport calculations using these latter materials must

necessarily include multi-species transport.

In choosing materials for electron devices, particularly as power sources, a

figure of merit has been the peak to saturated drift velocity ratio. From

this point of view indium phosphide is an attractive candidate, but this must
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be traded with the fact that the low field mobility of InP is less than that

of gallium arsenide. A recent study comparing these features suggests that

the r-valley mobility is the dominant material parameter of submicron

structures, whereas the high field saturated drift velocity is the dominant

material parameter of micron-length structures [11]. Additionally, if a

choice for two terminal sources is to be made between, e.g., InP and GaAs,

other issues emerge. For example, the scattering rates in InP indicate a

shorter energy relaxation time, than that of GaAs. The consequences of this

are higher frequency operation for InP. Thus, at least with respect to these

materials the peak to valley ratio of the materials is only one factor in the

design of an electrical source.

There is less to say about the effects of negative differential mobility on

the operation of avalanche diodes. Here the effects of negative differelitial

mobility conductivity are present but they are overshadowed by the effects of

avalanching. For example, recent studies show the presence of domains in the

IMPATT simulation whose presence is a direct consequence of negative

differential conductivity. These domains can complicate the actual transit

time of dipole layers associated with the avalanche generation, but the

negative differential mobility is a marginal issue. Such is not the case with

three-terminal devices.

For three-terminal device observations of bias dependent white light in GaAs

FETs, as from either the drain side of the gate contact and the gate side ol

the drain contact are consistent with numerical calculations showing the

presence of local high field dipole layers near the gate and drain contacts.

In addition, for a range of bias, some devices display a current dropback

consistent with bias dependent formation of high field domains and concurrent

current oscillations. This last result is shown in Fig. 5 [12]. Remaining

questions of interest focus on the manner in which transport in these devices

are examined. We begin with the equilibrium description of transport.
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FIGURE 5: Temperature dependent pulsed data for a GaAs FET, with a 3.Om
gate length, a source to drain separation of 8 .51m, and an
epitaxial thickness of 3000+ 500 A. Nominal background doping is
10* 7 /cm3 (12].

EQUILIBRIUM DESCRIPTION OF TRANSPORT

The steady state equilibrium distribution of transport has traditionally
provided most 6f the description of device behavior. Nevertheless, the
description ignores acceleration. It assumes that the carrier velocity is
determined by the local electric field, and that the total current is governed
by a balance of a drift component and and a diffusive component. Typically
the continuity equation is solved simultaneously with the current equation,

which for electrons is of the form

Jn - -etnvn D1 (2)
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and for holes:

Jp - +e(pvp - Dpx] (3)

Here n and p denote electron and hole concentration, v denotes velocity and D
diffusivity. The usual derivations of equations 3 and 4 proceed from a
linearization of the Boltzmann transport equation. The assumption is then
made that the equation is valid for high field nonlinear transport. Typically
the field dependent velocity assumed in these equations is of the type

displayed in Fig. (2).

While the use of the field dependent velocity in these equations is universal,
the type of diffusivity coefficient used in these studies is almost as
numerous as the numbers of workers involved in numerical studies. But a
number of important issues are at stake in the description of the
diffusivity. For example, if the Einstein relation is used:

D - PkT (4)
e

then, under equilibrium and/or zero current conditions, the dependence of
carrier density on conduction and valence band energy is given by either the
equilibrium Boltzmann or Fermi distribution. However, under non-equilibrium

conditions (and near zero current conditions), the Einstein relation
inadequately describes diffusive transport [13]. To correct for the latter
deficiency, the field dependent diffusivity often used in calculations is of a

form similar to that shown below (14]

D -kT+ TV (5)e sat

where at high values of electric field, the diffusivity only gradually
decreases. While the diffusivity coefficient of Eq. (5) more adequately
represents high field phenomena, because its field dependence is conceptually
consistent only with the assumption of nonequilibrium conditions it is
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conceptually inconsistent with equilibrium conditions, and will lead to

incorrect built-in potentials [15].

While the drift and diffusion equations clearly offer conceptual difficulties

with respect to consistency of physics they nevertheless offer considerable

insight into the physics of device operation, and are useful providing we keep

in mind it's limitation. For example, instabilities in long GaAs structures,

are known to depend critically on conditions at the contacts. A study, in

1969 [16], demonstrated that by experimentally creating different conditions

at the boundaries to the active region of GaAs a wide range of different

electrical instabilities could be obtained. Corresponding numerical studies

were performed through solutions to the above drift and diffusion equations,

in which a value for the electric field was specified at the cathode (and

anode) boundary. It was found that the boundary dependent electrical behavior

could broken into three categories, as summarized in Fig. 6. The key

conclusion of the study was that the electrical behavior of compound

semiconductors devices was dependent in a detailed way on contact conditions.

This same critical result has reappeared numerous times in a variety of

different types of structures.

NON-EQUILIBRIM DESCRIPTIONS OF TRANSPORT

The situation of most interest lies in non-equilibrium transport. Here the

most critical area of interest is the incorporation of acceleration into the

governing equations.

In examining non-equilibrium transport several approaches have been used. One

is the Monte Carlo method, where the trajectory of a particle is followed

through its acceleration and subsequent scattering events. In the discussion

below results of Monte Carlo calculations will be presented, but we first

concentrate on non-equilibrium phenomena as described by the moments of the

Boltzmann transport equation. These equations, in their simplest form for

parabolic bands, a position dependent conduction band, and a position

13



dependent effective mass take the form shown below [17]:
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FIGURE 6: a) The v(E) curve and the computer simulated current density j as
a function of average electric field <E> (A through Q) for various
cathode boundary fields. The boundary field is zero for curve A,
24 kv/cm for curve C and is indicated by the arrow for curves
Bz and B2 ' The sample is 10- 2 cm long, has n-1016

cm-3 and p - 6,860 cm2/Vsec. The right- and left-hand
ordinates are related by j - nev,V2 - 0.86xi0 T cm/sec.

b) Experimental j - <E> curves (+) and (-) (dashed) and

theoretical curves B and C (solid). The only significance in the

fact that the low field slopes differ is that the theoretical
curve is for a mobility of 6,860 CM2/Vsee, whereas the

experimental curve is for a mobility of 4,000 cm2/Vsec [16].
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Carrier balance:

an + VrTI- 2 d (6)Tt r m (2w)3 at I

Momentum balance:

a (nh2kdkd) -
- kd + Vr"k m -~ + q 2 B

(7)

+ kdkd -nkTVr m + 2 I kd3k
n 2m 2 -m (2w) atColl

Energy balance:

'a (n f 22k-kd !+kT)) Vr-nV'I"2 d + -kTat 2m 2 +Vn m 2j
(8)

- -nvVrEc + (2)s J at Coll 2m

In the above hkd is the mean momentum of the carriers, T is the carrier

temperature and for electrons, Ec is the position dependent conduction band

energy, and B an applied magnetic field. The terms on the right side

represent scattering and/or electron-hole interaction, as through

avalanching. For example, the right side of Eq. (21) represents intervalley

scattering. If avalanching occurs, generation is expressed through an energy

dependent ionization coefficient [18]. If a carrier temperature model is

assumed, then carrier generation is given by

na(T) (9)

where a(T) is the ionization state. In the absence of a first principle

determination of a(T), the following relation can be assumed as a starting

point

a(T) - a*(F)v(F) (10)
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where a*(F) and v(F) are the equilibrium ionization rates, and field

dependent velocities, and the relation between T and F is determined from the

equilibrium solution. While the Eq. (10) relation is uncertain, it has the

conceptual advantage of relating ionization to energy, rather than field.

But, perhaps the most significant feature of these equations is the presence

of acceleration, both spatial and temporal in the momentum balance equation.

These acceleration terms are absent from the drift and diffusion equations.

Additionally, under equilibrium conditions, and hence, zero current (i.e.

nhkd/m - 0), the electron temperature model teaches that for any spatially

nonuniform structure, such as a pn junction, the electron temperature is

everywhere constant and equal to the ambient. Thus, conceptual problems

arising from the form of the diffusion contribution to the drift and diffusion

equations do not enter here. Note that a generalized drift and diffusion
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FIGURE 7: Steady state uniform field carrier distribution for r-L-X
orientation in Gas (5J.
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current term is obtained when the left side of Eq. (7) is set to zero.

Equations of the type shown above provide considerable amount of information

with regard to transport. For example, with a r-L-X orientation in GaAs the

distribution of carriers as a function of field is shown in Fig. 7. Here the

relative distribution of carriers in each of the valleys is determined by the

distribution of temperature in each of the values, which in turn is driven by

the electric field, as shown in Fig. 8. Note that for set fields below

4Kv/cm. The carriers reside in the r-valley. At fields above 6Kv/cm, the

L-valley population exceeds that of the r-valley. It should be emphasized,

however, that because of the very low subsidiary valley mobility, most of the

current, is for fields up to 50 Kv/cm, is carried by the r-valley carriers.
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FIGURE 8: Temperature dependence of electric field for a r-L-X orientation
in GaAs. Electric field is the independent variable [5].

The interest in nonequilibrium equations lies not in the steady state uniform

field distribution, but in transients and nonuniform fields. The transient
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distribution of carrier density and velocity for electrons subject to a sudden
change in electric field is shown in Fig. 9 where we note the high peak

velocity.

The high peak velocity in Fig. 9a is primarily associated with r-valley

6
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FIGURE 9: Transient overshoot for a field of 9.6 Kv/cm [5]. r-L-X
orientation, and an applied field of (a) r and mean velocity,
(b) r- and L-valley carrier density.

transport. Indeed the r-valley velocity at 2.8 ps is near 4x10 7 cm/sec.
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The mean velocity

v- (nrvr + nLvL + nxvX)/N °  (11)

where n denotes net population of the r, L and X levels, and No is the

total carrier density, is also shown in Fig. 9. We note that the significant

drop in mean velocity is a consequence of electron transfer from the central

to the satellite valleys (see Fig. 9b). Also note a transient decrease in

r-valley velocity. This is a consequence of the difference between the

energy (longer) and momentum (shorter) relaxation times in GaAs. The time

independent spatially nonuniform situation also displays overshoot effects.

The situation when, in one dimension space charge effects are introduced is

displayed in Figs. (10) and (11), where for a gallium arsenide device of

different lengths we show the field and space charge distribution of the

1.6 .25 1.6 .50 m

1.2 1.2
0.8 0.8
0.4 0.4.

0 0.5 1.0 0 0.5. 1.0

N 0 : 5x0 15/cm U? 40 2.0 m

F =5xi0 v/cm .O/Lm 3.2 >"
,2.8 2.8 z
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2.01 2.0
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0.4 0.4

00 0'5 1.0 0 0.5 1.0
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FIGURE 10: Electric field and r-valley carrier distribution for GaAs (with
a two-level model) two-terminal devices of different lengths and a
mean field of 5 Kv/cm [5].
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FIGURE 11: Current-voltage characteristics, as a function of length, for the
structures of Fig. 10 [5].

r-valley electrons and the current voltage characteristics . The feature to

note is that as the device length decreases the current drive increases.

Note: in all cases the field is nonuniform and increases toward the anode.

Electron transfer exists for all four structures with the greatest amount of

transfer occurring for the longest device. Additionally, since high field

values are synonymous with carrier accumulation, we see that electron transfer

here is accompanied by an accumulation of L-valley carriers. Saturation in

the current density occurs at high bias, and even for the shortest device

there is electron transfer at the anode side of the device.

The role of non-equilibrium transport on two-dimensional simulations is

discussed for the vertical three terminal GaAs permeable base transistor [19],
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one cell of which is displayed in Fig. 12. One important advantage of this

structure is the parallel placement of the source and drain contacts and-the

absence of any substrate through which current can flow and reduce the

EMITTER

0.4/ rm

0.O.05m

5xO N

0.6 p.m

0.15L.m

FIGURE 12: Dimensions and doping level of the simulated PBT [201.

transfer characteristics of the device. The simulations were performed for a

one micron long source to drain region, and a 200 angstrom gate. Also for

comparison we gave included results of the drift and diffusion equation

simulations.

The computed I-V characteristics of the device shown in Fig. 12 are presented

in Fig. 13. The moment equation results are extrapolated to the origin, as

indicated by the long broken lines. The shorter dashed curves show the

results for the DDE. The comparison shows that the predicted current levels

are significantly higher for the moment equation solutions, a result

consistent with FET calculations performed by Cook and Frey [21] who used a
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FIGURE 13: Collector current vs. collector emitter voltage for different
values of base emitter voltage (20].

highly simplified momentum-energy transport model. The present calculation

results also indicate a region of negative differential forward conductivity

at VBE - 0.6V. The origin of this phenomena a consequence of electron

transfer. The.presence of a dc negative forward conductance is also a feature

of PBT measurements, but is clearly absent from DDE simulations [20].

A comparison between the total carrier density distribution along the center

of the channel for drift and diffusion and MBTE solutions is shown in Fig. 14

for VCE - l.OV and VBE - 0.4V. The moment equation prediction for the

r-valley carrier density is also shown.
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As seen in Fig. 14 for the DDE simulations, the carrier density reaches a

maximum between base contacts and displays a significant dipole layer. Here,

1.4

. VE = 0.4

1.2 -VCE= 10 I-I\

E N To / \
(0 1.0 -

0
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z
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02 ---- DDE

01 NCENTRAL VALLEY0 1 1 1

0 0.1 02 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

DISTANCE (microns)

FIGURE 14: Carrier density vs. distance along center of channel for the PBT

(20].

with the velocity in saturation and the cross sectional area at a minimum, the

carrier density must increase to maintain current continuity. In the moment

equation simulation the constraints of current continuity are more complex.

First a decrease in the cross sectional areas is, as in the DDE, accompanied

by an increase in field along the channel. The field increase under both

equilibrium and non-equilibrium conditions is qualitatively similar, as may be
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observed from Fig. 15 which shows the potential distribution along the center

of the PBT channel. However, consequent changes in electron temperature, both

1.0 
-- DOE
- MBTE0.8- o4/

B= 0.4

- 0.6 VCE = 1.0

z

o0 0.4-

0.2

0 --
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

DISTANCE

FIGURE 15: Potential vs. distance along center of channel for the PBT (201.

increasing and decreasing, lag behind the equilibrium state. This leads to

velocity overshoot (see Fig. 16) and a delay in electron transfer. As a

result, for nearly the first half of the device transport Js almost

exclusively r-valley transport. The implication is that if the r-valley

carrier velocity increases with increasing field, then the product of density

and cross sectional area normal to current flow must decrease to maintain

current continuity. Since the velocity increases faster than the area

decrease, the carrier density decreases.

At moderate bias levels typical FET calculations show a decreasing field as

the gate region is passed. This also occurs in the PBT. Now, as the cross

sectional area increases, the r-valley carriers exhibit a decrease in

velocity. It must be noted, however, that for the parameters of the

calculations the L-valley carriers make a negligible contribution to current.

Thus a decrease in carrier velocity results in a net increase in carrier

- 24



0.8

3.0

0.6

2.0
0

E0 0.4

1.0

0.2

0 0I f ' 0
0 0.2 0.4 0.6 0.8 1.0

DISTANCE (microns)

FIGURE 16: r-valley velocity along the center of the PBT channel (20).

concentration. However initially, the decrease in field is not accompanied by

a corresponding temperature decrease (as experienced in the uniform field

calculations). Thus, the high r-valley temperature results in transfer to

the L-valley giving rise to the second minimum in the r-valley carrier

density shown in Fig. 14. Further toward the drain, the field decreases.

However, relaxation is incomplete and the field at the collector is not equal

to the field at the emitter. Also note, the moment equation potential

distribution gives rise to a slightly higher field upstream of the base, and a

lower field, over a longer distance, downstream of the base compared to the

drift and diffusion result. More significantly, the electron temperature at

the collector exceeds that at the emitter. It is noted that as the field

relaxes, the electrons transfer back to the entral valley.
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NONEQUILIBRIUM ELECTRON-HOLE TRANSPORT

Additional nonequilibrium studies were discussed at the beginning of this

paper. This concerns nonequilibrium electron-hole transport, which for

specificity was discussed for InGaAs. The details are considered below.

In this recent study, ensemble Monte Carlo studies were performed in which

electrons were injected into p-type InGaAs (7]. In one case the acceptor

doping was 1017 cM "3 , and in the second case 5x10 1 7 cm - 3 . The

calculations were at 300°K and the ratio of the injected electrons to the

majority holes was taken to be 1:5. (Note: The ensemble Monte Carlo avoids

any assumptions on the magnitudes of the energy and momentum exchange in an

electron-hole (e-h) scattering process and the evolution of the electron and

hole distribution functions.) The electrons and holes were assumed to be in

equilibrium with the lattice when the electric field is switched on; and the

band model consisted of three nonparabolic valleys for the conduction band and

two parabolic light- and heavy-hole bands. The role of the light holes was

suppressed in this study. The model includes the elastic acoustic phonon,

impurity scattering using Ridley's model, alloy scattering, deformation

potential, intervalley and intravalley phonon scattering processes. The e-h

and screened carrier-phonon scattering are calculated from the expressions

given in [22], using a self-consistent screening model. Only one LO phonon

mode in this calcu- lation. The electron transport parameters for

In0 .6 3 Ga0 .4 7As are the same as those reported in [23]. However,

for hole effective masses and deformation potential constants, constants

appropriate to GaAs were used. The interaction between the L-valley electrons

and the heavy holes was ignored.

The drift velocities of the electrons injected into the p-type InGaAs as a

funct.on of the applied electric fields are plotted in Figs. 4 and 17a, for

doping levels of 5x101 7 and 1017 cm-3 , respectively. The curves

connecting the open circles in these figures correspond to situations where

the interaction with the mobile holes is ignored and only the interaction with

the ionized acceptor impurities is taken into account.
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FIGURE 17: a) Electron drift velocity in p-type InGaAs.
b) and c) Percentage of upper valley electons in p-type InGaAs (7].

When the interaction between the minority electrons and the mobile majority

holes is taken. into account, the electron velocities are lower for fields

below 4 kV/cm compared to majority electrons as can be seen from these

figures. At these low fields the electron transfer to the upper valleys is

negligible as shown in Fig. 17b, and the energy loss through e-h interaction

is not significant because the rate at which the electrons gain energy from

the electric field is small as can be seen in Fig. 18. However, the e-h

scattering which has the same angular distribution as the impurity scattering,

has the same effect on the electron mobility as doubling the doping level.

Consequently, the mobility of the electrons is reduced, leading to lower
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velocities. As the electric field is increased, the fraction of electrons

with enough energy to transfer to the upper valleys increases.

300
p=1 =l 7 cm 

- 3

n xO16 Cm-3 
e o

00.- 200 - ,P/ 6 kV/cm

>

E

irW

0 I 2 3 4 5

TIME (ps)
FIGURE 18: Electron energy in p-type InGaAs, as a function of field [27].

However, as the energy of the.electrons increases, the rate at which they lose

energy through e-h scattering is increased [27]. This results in retaining

more electrons in the central valley when scattering of the electron by the

majority holes is taken into account as can be seen in Fig. 17, and results in

higher electron velocities above 4 kV/cm in the present situation. An

additional feature of the velocity field curve of the minority electrons is

that it converges to that of the majority electrons at higher electric

fields. This reflects the fact that at these high fields the rate at which

electrons gain energy from the electric field exceeds the rate at which

electrons lose energy to the heavy holes. Consequently, the population of

electrons in the upper valleys increases.

It is worthwhile to note that the experimental measurement [8] of minority

carrier velocity does not exhibit any negative differential resistance. The

origins of this are unclear. We do point out that the measurements are
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performed for two-terminal systems and the highly nonuniform field

distribution may prevent the appearance of NDR.

TRANSPORT IN ULTRA-SUBMICRON DEVICES

The entire discussion of transport has been predicated on a semi-classical

picture. Certainly quantum effects take place on short-time scale where the

Fermi-Golden rule breaks down and where spatial feature sizes are the order of

tens of angstroms. As a rule of thumb, it is thought that quantum mechanical

effects become prominent when the feature size is of the order of a thermal

deBroglie wavelength or shorter, as shown below:

,W , ... 0 16 2 5
-So
0

8J 500
o C,
~ 6- 375 0 X/X 0 = X //m /m

0
GaAs (n

_j 46 ---------------- 2500( MX~b/to3kTo
W InP Ge 0_____0__

, 2 .0.06-, .o0.1,- 125

0 ;.l\? y .
0.01 0.1 10

EFFECTIVE MASS (m/m 0 )

FIGURE 19: Thermal deBroglie wavelength vs effective mass (24].

The quantum transport formulation for devices is extremely rich and nes

approaches are necessary. For example, it appears necessary to resort to

solutions, e.g., to the density matrix or some equivalent, form as the Wigner

distribution function (25]. Moment equations are also applicable. For
example, from the equation of motion of the density matrix, for a system

including mobile carriers and scattering centers, the first three moment

equations have the following form [26],

<<,(o)>> + -L <<p -)>> _ <<[sP(°)>> (12)
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+ L <<p(2)>> - - (<<p(o)>> + «(H.P(O)] (13)
m ax Lx

<<P(2)>> + !L <<p(s)>> - -2 i i<<p(1)>> + <<(HSIp(2)) (14)

m ax 18x)

where the << >> denote quantum ensemble averages, and using Dirac notation,

the operators of interest are of the form

p(o) - Ix° >< Xo (15)

PO1) - (l) (PIXO >< X0 1 + 1x0 >< XlP) (16)

p(2) - [fl2 (PI Xo >< .01+ 2PIX0 >< X0 1p + JX0 >< XoIp2] (17)

p(3) -
(18)

('(~P'SiXo >< Xol + 3PIX. >< XI + 3p2I X >< XoIP + jI )< XoIPs]

where p is the momentum operator. We note that the terms involving H.

incorporate dissipation. In a diagonal representation, the ensemble average

of the first three operators breaks down into the following form.

<P(-)> - Pii ni(xo) - n(xo) (19)

<p(-)> - Pii nimvi n(xo)mvd (20)

A2 a2

<p(2)> _ piim 2 [(vi-vd) + vd]2 - piini T Inni

- + m2n h2  a2 (21)
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where 'ij is the diagonal element of the density matrix, and

Oxx - I Piim(vi-vd)2  (22)

It is clear that with the exception of the third operator, which contains a

term involving Plank's constant the equations are of a classical form. Thus,

in the simplest approximation, there appears to be a close similarity between

the classical moment equations and that obtained quantum mechanically. The

difficult is of course in solving these equations.

There is however an interesting situation to consider: that in which

Pui - 1/N the system. In this case the first two moment equations,

including dissipation in momentum, reduces to

a__n + divnv - 0 (23)
at

Bnv a n a V+ 4ql n (24)
at +--" -1- +

where

Q 2 1 a 2.- (25)

2m fiF (X2

The quantity V represents an imposed barrier and the self-consistent energy

associated with Poisson's equation. The potential Q [27] is density dependent

and tends to become significant near strong barriers, where the curvature of

4- will either enhance or diminish the imposed barrier. .Tunnelling, and

resonance arises from Q.

In multiple dimensions these equations are subject to the constraint

fmv.dx - nh (26)
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or in a gauge that includes a vector potential, the constraint

+ -c! x-n (27)

Presently, device systems are being constructed which are influenced by the

constraint of Eq. (27), often called the Aharonov-Bohm condition (28]. In

particular, structures are bing constructed in which the path of an incident

beam of electrons is split and then recombined. The split path lengths of the

original beam are different, and under coherent reconstruction in which Eq.

(27) is satisfied, conduction oscillations are anticipated. A structure

originally proposed to deal with this is displayed in Fig. 20.

yvx

IA> IS> xI xL

FIGURE 20: Configuration suitable for the Aharonov-Bobm constraint (29].
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Abstract

This study describes the evolution and implementation of a set of quantum balance equations for examining
transport im mescosopic structures.

Key Words

Wigner functions, quantum potentials, quantum balance equations.

Introduction

This study describes the evolution and implementation of a set of quantum balance equations for examining
transport im mescoscopic structures. The study is motivated by a perceived need for an intuitively accessible set
of multi-dimensional quantum transport equations, that permit the self-consistent calculation of partide
current and current density. The oal is the development of a set of quantum hydrodynamic equations that
reduce to the single particle equations [1] for a pure state, and the classical hydrodynamic equations [2] as * -
0. As discussed below, these goals have been partially met.

Pure State and Classical Moment Equations

The hydrodynamic equatons for a pure state, for single particle transport, spatial variations in one dimension.
and a classical potential U(xt), are, with # (xt) = . pexp[iS(x,t)/a , and Pd = aS/ax:

atp +ax(Pdp/m) = 0 (1)

at(pPd)+ax(pPd2Im)+paX(U+Q) = 0 (2)
Q = . 2 /2m p)aX2

J p (3)

In the above, p and pd/m represent probability density and probability current flux; quantum mechanics is
represented by the quantum potential, Q [31. Note: because of the one dimensional nature of the transport,
'Bohr-Sommerfeld' constraints are automatically satisfied [3].) The classical moment equations for single band
transport and spatially independent effective mass are [2]:

at-0 + ax(Pd.Im) = 0 (4)

8t(PPd) +ax(PPd2/m) +paxU +ax(pkT) = pPdcoll (5)

atW+ x(PdW/m) + ax(PdPkT/m) +(Ppd/m)axU = 81Wcoll (6)
W = 3pkT/2+ppd/2m (7)

It is worthwhile emphasizing that the above equations involve three dimensional momentum space integration,
with spatial variations in only one direction, and that density and momentum now represent particle density.
The derivative notation in the above equations is ax = a/ax, etc.

Structure of the Quantum Mechanical Equations

If the quantum transport equations for a pure state are iven by equations (1) through (3), and the classical
equations are given by (4) through (7), at the very least it maybe anticipated that quantum contributions wilar.ise by replacing the classical potential U(x,t) by U(x,t) + Q~x,t). How good is tis statement? To examine
this we turn to an approximate non-equilibrium Wigner function, discussd in (4].
The non-equilibrium distribution function is constructed 14] from the zero current eouilibrium distribution
function obtained by Wigner (5], and discussed more recently by Ancona and lafrate 16]:
fw = exp-,6[p 2/2m + UJ{ 1-2a(ax= U-,o(axU) 2 /2 )/3 -a(l-ppx'/m)ax

2 U/3) (8)

In equation (8), # = 1/kT, a = h1#2 /2m, and p2 = px2 + Py2 + pz2 .

The construction of the nonequilibrium distribution function involves replacing the potential and its derivatives
in equation (8) by corresponding density expressions. The carrier density is

p = 2(i/2s )ffw(xp)d s p = Nexp-jU[l-2&(a x2 U-#(axU 2 )/2)/3] (9)

where N = 2(m/2K,6, 2)3/2 . After demonstrating that axU - -(axp)/(6p) + 0(at), and ax=U =

-8x{(axp)/p)}lB6 + 0(-), it is a direct matter to show:
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fo = (p/N)exp[-6p 2/2m][1 + (o/3p)(l-Ppx 2 m)(8x{(axP)lp}) +O(al)] (10)

Note: when equation (9) is substituted into equation (4), with U representing the equilibrium potential,
equation (8), to order a, is retrieved.

To see what equation (10) offers, consider the steady state small signal Wigner function within a relaxation time
approximation, and to second order in A [6],

fw = fo-aw(px/m)axfo-(axU)a pfo+ (A 2/24 )(ax U)aP Pfo] (11)

Inserting equation (10) into (11), the following key results emerge: ffwd'p =ffod'p, and for ix
-(2e/(21[A )S )f fw(px/m)d3 p:

ix = p{pax(U+Q13)+ax(kTp)} (12)

which was first obtained by Ancona and Iafrate [6]. Here, p = e-r/m. While this result is consistent with the
general philosophy of the introductory paragraph of this section the factor of 3 on the quantum potential needs
to be explored. For a displaced version of equation (10), the factor of 3 is retained for the moments of the
Wigner-Boltzmann (WB) equation, as considered next

Moments of the Wigner-Boltzman Equation

The quantum moment equations (see also [7) have been obtained for the WB equation with quantum
contributions to order A 2 , and for a displaced distribution function in which p in equation (10) is replaced by
P-Pd. The WB equation of motion is:

a tfw + (P,/m)axfw-(a xU)a pfW + (h 2 2 4 )(axULa p*f wI = fwcoll (13)

and the first three moment equaton corresponding to that of equations (4) through (7) are:

atp +ax(PdPlm) = 0 (14)

at(ppd)+ax(ppd2/m)+pax(U+03) +a x(pkT) = appdooll (15)

atw + ax(PdW/m) + ax(PdPkT/m) + (ppdm)ax(U+Qf3)

.(pA2 /l2m)ax{(axP)/p}ax(Pd/m) = aW~coll (16)

W = 3pkT/2+ppd2/2m-(pa 2 /24m)ax{(axpyp)} (17)

Eation 17) and equation (9) for density has strict quantum mechanical meaning (see also the discussion
gequation (25) in [5]). Bfore attending to the above results it is important to establish a confidence
he quantum balane equatins To this end the general moment equation formulation, including

disspation, of Strosco [8] is recalled. Stroscio's results while speific to a phase space that includes one space
dimension and one momentum direction, overlap those of this study, as demonstrated below. In this case,
borrowing the notation of [8] within the framework of the displaced Wigner function used herein, it isstraightforward to first show that:

P <(P-Pd)' > = mof1 -(2-3)(ax{(axp)/p,}/J (18)

<P(P-Pd)' > = 0 (19)

from which reference [81 equations (10a), and (lOb) when combined with (1Oa) yield equations (14) and (15) of
this study, where the colLion integrals are treated generically. The enerp balance equation is treatedsimilarly. Here, reference [7] equation (10b), when multipled byppdm as added to (10c), which is multipled by
112m; the continuity equation is included in this procedure. The result of this manipulation is a one
dimensional phase space version of the energy balance equation of this study, W is replaced by:.

W' pkT/2+ppd'/2m-(tA2124m)ax{(axpy)} (20)

From the point of view of device modeling. it i: pointed out a quantum corrected quasi-Fermi energy can be
defined. Writing BU 4 3 + nlr, where Pr is a reference density, the current density in equation (12)
can be written as j = ppVE [6], and equations (15) and (16) can be reexpressed as:

st(Ppd)+8x(pPd/m)+P8xE = 8PPd,coll (21)

a tw + a (PdW/m) + a x(PdP kT/m)4 (p pd/m)a xE

-(pA2/12m)ax{(axp)/p}8x(pd/m) = OW'coU (22)

In the above form it appears that the dynamics of the transport are governed by an energy B. However, E
is introduced as a transformation of variables.



Quantum moment balance equations 1073

Anticipated Solutions of the Quantum Balance Equations

We focus attention on the single partie pure state equitions, whHere of a ero time derivative of the
momentum balance equation Implies that Xt). (X+x)S t and p(xt) - p(x). For zero time derivatives,
one space integration yields (ignorn "spatial atives of the effective mass) energy conservation, Pd'f2m +
( +Q ) -=E, and constant probability current, ppd/m - J, where E0 and J are integration constants.
Using the definition of the quantum potential, energy conservation can be rewritten as:

ax2J p + (2rn 2 )o-U-(n ' )UJp = 0 (23)

For bound states, J = 4 and equation (23) is an eigenvalue problem, one that in the case of a resonant tunnel
structure leads to quasi-bound states. Further under zero current conditions, with Eo representing the
eigenvalues,Q o -U, and the values of Q are spatially dependent and, in some cases, are approximately
equal to the bound states. This result will be prominantly displayed in the discussion below.

The single particle Schrodinger picture is limited, in that being dissipatioaless it does not permit a direct
transition transition to a multiparticle problem when contacts are considered. For example, in the case of
multiparticle transport with electrons wovng ballistically within the N- region of an N + N-N + structure, the
mean carrier energy and velocity increase from the cathode to the anode. Conservation of multiparticle current
requires that increases in velocity are accompanied by decases in particle density. Thus in the absence of
dissipation there will necessarily be charge depletion at the downstrem anode, unless dissipation is present in
the interior othe device the assumpton is made, that te physical contact are boundaries where thenumbers of carriers at the cathode and anode are equal then ,cauerlng withir the interior of te structure Isconceptually necessary. For tehydrodymic formulation of the single particle Schodier' s equation, there
is no meanin to .troducmgN catode and anode regions, since we are dealing with a single particle.

In that dissipation is an essential feature of transport in devices, the quantum balance equations represented by
equations (13) through (17) form a staring point for the simulations to be discussed below. To date, our
simulations include the first two moment equations, and Poisson's equation. These have been solved for a
spatially dependent effect mass, and for Fein statistics. Here, since we have neither generated a set of WB
moment equations for a spatially dependent effective mass nor have we obtained a displaced Wigner function
that satisfied Fermi statisfics, we have instead patched on these contributions. Further, we have treated the
factor of '3' associated with equations (14) and (q5. as an adjustable parameter that reflects the statistical
distribution used as a basis for the calculation, as discussed in [6], and have replaced it by unity. In this case
with v - pd/m, the continuity equation is unchanged, while the momentum balance equation reads:

atpV+ax(pV2 ) + (p/m){[a(U+Q)] +[(pv/2)-(NkTFllp)Jaxnm} +(213)axNkTFsl 2 +pvr =0 (24)
where F1 (xf) = (2/~J )51[4(l + exp(x-xf)]dx, where the integration range is. • x<-. 'xj' is defined implictly
asachange9f variabl through the relation F1 l, ,¢N; where p/N)+p/(NJ 8), fdrxf-<4.4426, andxF(9/16) 11 (p/N)'I',forx;>4.4426. Using the identities assoiated wit the Fer integal, namely
l"=/2 =(2/3)F1 / , and introducing the term E-U+Q+ kTYf, which is a generalization of the variable
transofrmation fiscussed above the momentum balance equation is:

a tpv+ a x(pV
2 ) + (plm){[a xE + ((pv2i2)-(NkTFl, p)lax im} +pvt" = 0 (25)

Equation (25) is coupled to the equation of continuity and Poisson's equation, with U(x) representing the
conduction band energy. The heterostructure is represented by the Anderson rule: U = z - X(x), where x(x) is
a position dependent electron affinity. I is obtained from Poisson's equation: Ve vI - e2 [p -p.], where (x)
is a position dependent permitivity, and p. is a position dependent doping leveL Fo[ conduction band
variations between GaAs and AIxGalxAs, the following relationships were used: m = 0.067 +0.083x AEc =
0.697x.

Calculations

The calculations discussed below are for the structure shown in figure 1, with resonant tunnelling barriers
located symmetrically at the center of the structure. The structure and dimensions of the barriers are displayed
in figure 2, which shows the current voltage characteristics of this device at 77KC There is a weak region of
negative conductance. The conduction band profile at different bias levels, figure 3, shqws the expected tilt as
the bias is increased. The distribution of energy is such that at 0.Iv, approximatley 20% of the voltage drop falls
across the upstream accumulation layer, 30% within the confines of the barrier, and 50% across downstream
from the second barrier. The charge distribution, figure 4, shows a region of charge accumulation upstream of
the barrier that increases with increasing bias, as does the charge in the well. While different boundary
condition: have not been studied these results should be extremely sensitive to the boundary conditions at the
cathode; as should the effects of incorporating the energy balance equation. It is not clear that including the
latter will reproduce the charge depletion at resonance seen by several other studies.

In all our simulations, we have noticed t&'e formation of a depletion layer downstream of the second barrier
once we pass the valley current of the I-V characteristic. This depletion layer is a specific single particle
quantum effect. The depletion layer keeps on extending for biases greatjtharkthe voltage at the valley of the
I-V curve until the depletion layer touches the heavily doped region (210'0 cm-.3 ). Then, the electron density
downstream of the second barrier gradually increases and the depletion region disappears.

The quantum potential is displayed in figure 5. If we concentrate on its value in the well, the most dramatic
point to note is that as the bias is raised the value of the qual.um potential tends to cluster around a narrow
range, increasing in magnitude from the upstream barrier to the downstream barrier. Within the barrier the
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values of Q cluster around the quasi-bound state value associated with single particles. This result tends to
emphasize that the approach to resonance is governed by single particle contributions. We note that Q is
obtained from and affects p. Here, at low values of bias p in the trst barrier is small. this is concomitant with
large values of Q in the same region. The large value of Q also prevents the carriers from moving through the
second barrier and forces them to pile up in the well. For larger values of bias the strength of Q decreases in
the second barrier and charge density begins to buildup.

High values of carrier density in the well are consistent with low values of carrier velocity, and -'ice versa. It is
found that at low values of bias the average time spent in the well, defined as ti < v >, where L ,s the width of
the well, and < v > is the mean velocity in the well varies at low values of bias from lfs, to approximately
SOfs at bias levels in the region of negative differential resistance. Indeed, the calculations .ugpt that it is the
significantly reduced velocity at resonance that is resjponsible for NDR. The low average velocity in the well in
contrast to the very high average velocity in the barrier reflects the fact that the electron spends more time in
the well than in the barrier. Correspondingly, the charge density in the well is more prominent than in the
barriers. The average velocity is always large in the depletion region after the second barrier. Indeed, velocities
in the second barrier reached their saturated drift value; a result consistent with the proposal by Luryi [9]. We
note that while the well density increases with bias, an estimate of the integrated charge indicates that it
decreases the structure decreases in the NDR region, with most of the decrease in local charge occuring in the
downstream barrier and the region between the downstream barrier and the collector contact.

Conclusions

The calculations display several very distinct features: (l)The charge from the cathode tunnels through the first
barrier into the well, and the amount of charge in the well increases with increasing bias. (2) Resonance and
NDR are dominantly single particle effects and are accompanied by a dramatic c: -ease in velocity in the well.
(3) Excessive increases in velocity in the second barrier must be accompanied by either elastic and/or inelastic
scattering to prevent the mean velocity from reaching unrealistically high values. (4) The current voltage
relationships exhibit peak-to-valley ratios which are smaller than the experimental values. However, for a
devie with a ross-section of 25urn x 25prn, a typical experimental cross-section, the peak-current calculated
numerically is of the order of 0.2-20 mA. This is the typical eof current of various RTDs studied
experimentally. The peak-to-valley ratios are typically a fact or 2to 4ower than the experimental findings.
This probably results from the inclusion of a relaxation term in the momentum balance equation. It has beenshown experimentally that the presence of scattering in typical RTD (voluntary doped) could substantially
reduced their peak-to-valley ratio (5)h current occurs at a rather small bias and its location is strongly

dependent on the actual doping prof'e outside the resonant tunneling structe, itsel. The results a'e tron.glydependent upon the detals of the quantum distribution function, whose form was assuizmed rather than
calculated.

Summarizing, even though incomplete, this study is the first implementation of the first two quantum balance
equations. These equations lead to occurence of a NDR region in typical resonant tunneling structures.
Further work is needed to include the energy-balance equation, together with a more sophisticated treatrient of
scattering (both elastic and inelastic). When included, those refinements will allow us to distinguish between
the possibilities of coherent and/or sequential tunneling in resonant tunne.ng structures, and be used as a
powerful tool to design typical RTDs.
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EIECTRON DIFFRACTION THROUGH

AN APERTURE IN A POTENTIAL WALL

M. Cahay, J. P. Kreskovsky and H. L Grubin

Scientific Research Associates, Inc., P. O. Box 1058
Glastonbury, CT 06033

Abstract

We study the diffraction of a two-dimensional Gaussian wavepacket through a rectanilar aperture in a finite
potential wall (one slit experiment). For wavepacket with incident wavevector kQ satisfying the diffraction
condition, ko = 2w/w, w beingthe slit width, the near field (Fresnel-like) diffraction pattern behind the slit can
be dearly seen for small time duration (< 0.2ps). At later time steps, the diffracted beam is fragmented into
lobes (perpendicular to the direction of incidence of the wavepacket) as a result of the multiple reflections of
the wavepacket inside the slit (assumed to be of finite thickness). At later time, no far-field Frunhoffer
diffraction pattern is observed in our numerical simulations.

Keywords

Electron diffraction; Schroedinger equation; ballistic transport; split gate.

Introduction

With the advent of sophisticated growth techniques such as Molecular Beam Epitaxy and Metal Organic
Chemical Vapor Deposition, there has been an increased theoretical interest in various quantum mechanical
tunneling problems including: (1) the resonanttnnel'.g of electrons through double barrier heter.tructures
a problem of primary importance in asserting the switching time of resonant tunneling device (RTD) (Huge
and Stovneng, 1989; Goldberg andcoworkers, 1967), (2) ectron propagation through narrow ballistic
constriction (defined by a split-gate) in te two-dimensional electron gas of a GaAs-Al GaltAs
heterostructure. The latter followed the recen expermental discovery (Van WeA ant coworkers, 1988) that
the conductance of such constrictions increases in a sequence of steps of height /(at icienty low
temperature). More recently, the possibility of using narrow split-gate for transistor applications has been
suggested by Kriman and coworkers (1988) in their newly proposed QUADFET.

Both RTD's and QUADFET's have potential high-speed device applications within the terahertz regime
(Haune and Stovneng, 1989; Bandyopadhyay an dcoworkers, 1989). On one hand, the fast switchin$ response of
RTD' s has been widely investigated using purely one dimensional analysis of wavepacket propagation through
double barrier heterostructures (Hauge and Stovneng, 1989; Goldberg and coworkers, 1967). In practice
however, electrons are injected from 3D contacts and tunneling through the quantum well of the RTD is
characterized by two-dimensional dynamics. On the other hand, in view of their potentiality for high-speed
applications (such as in the QUADFET), there is now a call for a transient analysis of quantum transport
through narrow ballistic constrictions to supplement the two dimensional steady-state analysis completed
recently by several authors (Szafer and Stone, 1989; Kirczenow, 1989 and references therein).

Hereafter, we limit our numerical simulations to the diffraction of a gaussian wavepacket through a narrow
aperture in a potential wall of finite height. The thickness d and length w of the slit are assumed to be IOU and
200A respectively, which corresponds to an aspect ratio a - d/w equal to 0.5. The choice of such a narrow slit
was imposed to make the problem tractable numerically without having to use an excessive number of grid
points. However, the time evolution of the diffracted beam shows interesting features which could still be
present in the electron diffraction through a more realistic split gate realizable with piesent-day technology
(Thornton and coworkers, 1986; Zhen; and coworkers, 1986). The use of electron diffraction through a
split-gate was recently proposed by Kriman and coworkers (1988) for interesting device applications.

The Numerical Approach

Recently, Ancilatto and coworkers (1989) have developed a method to solve the multi-dimensional
Schroedinger equation based on the Chebychev polynomial expansion of the time evolution operator. Each
term in this expansion is calculated using FFT computations. Tie subsequent effort to calculate the
quantum-meanical wavefunction 0(t) scales roughly as- MN0 Ig N, where M is the number of terms in the
Chebychev expansion, d is the number of space dimensions and No is the total number of grid points. One
drawback of this approach is that it requires the use of uniformly spaced grid points. Another drawback of the
Chebychev expansion of the time-evolution operator is that, being a truncatedseries expansion, it does not
conserve the unitarity of the time-evolution operator unless the truncated series converges. As a consequence,
energy and norms of the wavefunction need not be conserved at any time step.

I I185
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In this paper, we used an alternative approach to solve the time-dependent Schroedinger equation based upon a
finite-difference solution procedure to solve a set of coupled equations governing the real and imaginay
components of the wavefinction. The use of Crank-Nicolson differencing scheme insures conservation of the
norm of the wavefunction at all times. The resulting coupled difference equations are then solved using a block
alternating direction implicit (AD[) technique foil oingthe scalar AD development of Douglas and Guna(14.l,) R ecently, a similar algorithm has been used by Barker (1989) to study the wavepacket propagation
throug Aharanov-Bohm rings. The technique can be used with non-uniform grid spacigs, allows for an
explicit time-dependence of the potential energy profile and can readily be extended to include the resence of
a satially varying effective-mass, of an external magnetic field and to three dimensional configurations (Cahay
anda cworkers,1989).

Numerical Examples

As an illustrative example, we consider the diffraction of a twvo-dimensional Gaussian wavepacket through a
narrow constriction such as the one shown in the upper left frame of Fig. 1. The subsequent frames show the
time-evolution of the wavepacket impinging on a 100 A wide potential barrier of height 0.06eV containing a 200
A wide slit where the potential is assumed to be zero. The slit is disposed symmetrically with respect to the
center of the simulation domain, a square of dimensions 3,000k x 3,000k. Our numerical simulations were
performed using a non-uniform grid spacing with 69 and 79 grid points in the x and y directions respectively. In
an actal split-gate, the slit can actually be varied from a few hundred to a few thousand angtroms while
sweeping the gate voltage. The potential in the 2D electron gas is also different from the sharp potential wall
assumed in the presnt work. We will comment on this point in our conclusion section. The iniial wavepacketis assumed to be

#(x~y~t=o) - [i/ 11w2J exp~ikox] ex '-((X-xo)'+(y-yo) 2 ,/2o2 ] (1)

Where (X,,yo) are the coordinates of the wavepack'et center ado is g qual to 100k. Finally, the electron
wavevectorko is 0.0094 k-1(with this value of ko, afree electron (n =0.067no) travels alength of 1,000k in0.6 ps). The average kinetic energy of an electron in the state (1) is about 10 me for the values of the
parameters listed aboe and is therefore about 1/6th of the barrier height. A Fermi energy of about 10 meV
corresponds to a typical 2D electron gas sheet density of .- 3 x 1011t cu-. In F. 1, the frme are taken at
various physical time steps equal to a multiple of 0.5p (which is equal to 10 times the comnputational time

stp.W haeplotted the logarithmic contour plots (login) of the probability density I,t(t)| '. For k00.0094A-l , the electron De Broglie wavelength (1 'i- 2w/k") is about 660k and therefore bigger than thle slit
width. Consequently, even thoush part of the wavepacket ( 35%) is transmitted on the righit-hand side of the
wall at time tkCJ.25ps, no diffraction lobes are detectable in the tranmitted waveform. For an electron with an
incident energy of 45 meV (such an electron is far in the tall of the Fermi distribution in the previous example),

ko-0.026SA, which isdcoseto the diffractioncondition, ko,,2i/w. In that case, as can be seen in Fig.Z2 there
is actually a diffraction of the electron wavepacket through th slit as indicated by the existence of three distinct
lobes in the contour plots of the charge density profiles ini the immediate vicinity (on the right) of the slit at
time t equal 0.15 ps. However, for later time steps, the diffraction lobes acual smear nto a main one which
(for this speific case) precludes the actual observation of a Franoffer-like diffraction pattern far from the
slit. In fact, the diffraction condition ko i, 2.c/w, is only met by a small .fract i.on of the various Fourie
components of the wavepacket incident on the slit. As a result, the diffraction pattern cannot he as sharp as in
the case of an incident p lane wave, which is the idealistic situation equivalent to the one used an optics to study
light diffraction through a narrow slit. More numerical simulations involving modification of the shape of the
wavepackcet, potential walls and slit dimensions and extension of the simulation domain need to be performedhowever before determining if an appropriate set of parameters can eventually lead to a Fraunhoffer-like
diffraction pattern far from the slit. The overall s of the wavepadcet behind the slit changes drasticaly
while vayig the direction of incident wavevector This is illustrated in Fig. 3 where the wavepacket with a
Inetic energy equal to 10meV was assumed to be incident at a 45 angle on the sit. This example streses the
importance of collimating the electron beam in order to observe a diffraction pattern with different lobes
beyond the sit. This point was already stressed by Kriman and coworkers (1988) in their steady state analysis of
the QUADFET.
The width of the potential barrier below the split gate is of primacn importance in determining the diffraction
pattern behind the split-gate. As a result of the finite width, the electron wavepacket suffer multip Ic reflectionsbetween the potential walls defined by the slit. The resulting spread in transit times introduces adtion

structure in the diffracted electron beam. For instance, the time frame t - 0.35 ps in Fig. 2 above dearly showsthe presence of successive maxima in the transmitted part of the wavea t in the direction perpendicular to
the potential walL Finally, additional lobes can be learly seen in the reflected part of the wavepacket, Le, on
the left side of the slit. Such "Back diffraction would probably also exist while considering realistic
split-gate and it could be eliminated by appropriately collimatin the incident electron beam.

Conclusions

Preliminary results describing the time-evolution and diffraction of a wavepacket through a narrow slit in afinite poteaIal wall have been reported. In order to save computational time, the size of the slit was chosen to
be smaller than the actual split-gate realized with present day techology (Thornton and coworkers (1986); Van
Wees and coworkers (1986). Several interesting features in the time evolution of the wavepacket have however
been pointed out: (1) A Fresnel-like diffraction pattern is seen at early time once the diffraction requirement is
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satisfied, Le., ko=2w/w (ko being the wavepacket incident wavenumber and w being the slit width); (2 Due to
thefinite thickness of the slit (in our simulation, te aspect ratio of the slit is equal to 0.5), the main racted
lobe is found to be fragmented in the direction perpendicular to the slit aperture as a result of the multiple
reflections through the slit of finite length; (3) No Fraunhoffer-like diffraction pattern is seen far from the slit
even when the slit width is comparable to the electron De Broglie wavelength.

One should emphasize that the Fresnel-like diffraction pattern observed in our simulations is an artifact of the
use of infinitely sha comers in the potential energy profile. A more realistic simulation would require
self-cansistent calculations of the potential energy profile below a splt-gate such as reported by LA= and
coworkers (1988). Even with appropriate collimation of a nearly monochromatic incident electron beam, the
ronding of the comers below the split-gate on the scale of the wavelength of the incident electron could be the
dominant source of suppression of the diffraction pattern at low temperatures.
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transmitted lobe of the diffracted wavepacket is clearly segmented into

various fragments. These are due to multiple reflections of the wavepacket

inside the slit which has finite length. As a result, different parts of the

vavepacket are delayed further in time leading to successive transmitted lobes.
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We predict the existence of two different sets of conductance minima in the conduc-
tance oscillation of a one-dimensional ring due to the electrostatic Aharonov-Bohm
effecL The two sets of minima arise from two different conditions and effectively
double the frequency of the conductance troughs in the oscillations. This makes the
frequency of the troughs twice that predicted by the Aharonov-Bohm effect. We
discuss the origin of this feature along with the effects of temperature and elastic
scattering. We also compare it with the magnetostatic Aronov-A'tshuler-Spivak
effect and point out the similarities and differences.

I. INTRODUCTION

Oscillatory conductance due to the electrostatic Aharonov-Bohm effect has
been predicted for a variety of ring structures along with potential device applica-
tions of that effect. In this paper, we point out an intriguing feature in the conduc-
tance oscillation of a one-dimensional ring due to the electrostatic Aharonov-Bohm
effect. Unlike in the magnetostatic effect, the conductance in the electrostatic ef-
fect reaches its minimum under two different conditions which gives rise to two-
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distinct and independent sets of conductance minima in the oscillations. One set of
minima arises from the usual destructive interference of transmitted electrons and
the other arises from constructive interference of reflected electrons. The minima
in each individual set recur in the oscillations with the periodicity predicted by the
Aharonov-Bohm effect, but the separation between two adjacent minima (belong-
ing to the two different sets) is smaller than and unrelated to the Aharonov-Bohm
periodicity. In the following Sections, we establish this feature and discuss various
issues related to it.

II. THEORY

The conductance G of a one-dimensional structure in the linear response
regime is given by the two-probe Landauer or Tsu-Esaki formula [1]

G 2 kT J dE ITtta(E)J2 sech2( E  - EF (1)

where Ttota(E) is the tranmission coefficient of an electron with incident energy
E through the entire structure (i.e. from one contact to the other), T is the
temperature and EF is the Fermi level.

The problem of calculating the conductance G is essentially the problem of
calculating Totat. The quantity Ttta, can be found from the overall scattering
matrix for the structure. For a ring structure, the overall scattering matrix is
determined by cascading three scattering matrices [2] representing propagation
from the left lead of the ring to the two interfering paths, propagatiori along the
paths, and propagation from the paths to the right lead. For simplicity, we will
represent the first and the last of these scattering matrices by the so-called Shapiro
matrix which is defined in Ref. 3.

A. Ballistic Transport

In the case of ballistic transport, cascading the aforementioned three scattering
matrices (according to the prescription of Ref. 2) yields the overall scattering
matrix and the transmission Ttotat [1,4] as

= [(t, + t2) - (b - a) 2 tt 2 (tl' + t2 )]
1 - tl(a 2t1 ' + b2t2'][1 - t2(a2t2' + b2t '] - a2b2t1t 2(t' + t2 ')2

(2)
where c, a and b are the elements of the Shapiro matrix2,..and t and r stand
for transmission and reflection amplitudes within the two interfering paths. The
subscripts 'I' and '2' identify the corresponding path and the unprimed and primed
quantities are associated with forward and reverse propagation of the electron.

2For a definition of these elements, see Ref. 1, 3 or 4.
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In the presence of an external potential V inducing the electrostatic Aharonov-
Bohm effect, t1, t2, tl and t 2' transform according to the following rule [4]:

/ 11 +~1 t1'1ti -- ti _+ 1(3)t2 -+ t1C t 21 -+ ̂11t e 3

where the quantities with the "hats" -.present the transmission amplitudes in the
absence of the external potential V . and 0 is the electrostatic Aharonov-Bohm
phase-shift between the two paths induced by V and given by

h=V<r,> [ + :V - 11L (4)
h -

Here < rt > is the harmonic mean of the transit times through the two paths
which depends on V and the kinetic energy E of the electrons, m* is the electron's
effective mass and L is the length of each path.

Using the transformations given by Equation (3) in Equation (2) and assuming
that in the absence of the external potential V the two paths are identical in all

respects (i.e. i1 = 12 and t1' = t^2), we obtain

Tota(o) =d 1 (1 + ei¢)(1 - (b - a)2it 1'e4)
D(11, a, b, 4)

where the denominator D is a function of 11, a, b and 4.
We find from the above equation that Ttotoa() vanishes and hence the con-

ductance (see Equation (1)) reaches a minimum whenever

V____ eV
4)=(2n + 1)r, i.e. whe h [1 + E - 1 L=(27+1)x

(6)
This gives the usual conductance minima (which we call the primary minima)
associated with destructive interference of transmitted electrons.

However, we find from Equation (5) that Ttoiai() also vanishcs whcnevef

(b-a)2 jij'e# = 1 (7)

From the unitarity of the Shapiro matrix (see Ref. 4) it cai be shown that b - a
differs from unity only by a constant phase factor, i.e

b - a = eiv (8)
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Now since in ballistic transport il = i ekL (where k is the electron's wavevec-

to in either path in the absence of the external potential V), Equation (7) really

corresponds to the condition

2kiL +qS 2 +_2_ -E
h [ +-V + 11L+2v=2m7r (9)

Whenever Equation (9) is satisfied, another set of conductance minima should
appear in the oscillations since the numerator of Tt,at(q) goes to zero and the
conductance should fall to a minimum unless the denominator of T 0t 4 (0) also
happens to go to zero at the same time. It is easy to see that the denominator of
Tt tal(o) vanishes whenever q0 is an even multiple of r. Hence, unless Equation
(9) is satisfied only by those values of q that are even multiples of 7r (which
requires 2(k 1 L + v) to be also an even multiple of r), the conductance of the
structure should reach a minimum whenever q$ satisfies Equation (9). This gives
rise to an additional set of minima which we call the secondary minima. Actually,
the secondary minima always occur unless 2(k 1 L + v) is an even or an odd
multiple of 7r. The latter case is not proved here for the sake of brevity, but is
proved in Ref. 4.

B. Diffusive Transport

In the case of diffusive transport, Twtai(0) can again be found from the
prescription of Ref. 2, except that now we have to evaluate it numerically. We
have calculated the conductance G vs. the electrostatic potential V for both
ballistic and diffusive transport. The results are displayed in Fig. 1. The secondary
minima are not washed out by elastic scattering in the weak localization regime.
However, they begin to wash out with the onset of strong localization and with
increasing temperature. The effect of temperature has been discussed in Ref. 4.
Note also the interesting feature exhibited by the secondary minima; they become
more and more pronounced in the higher cycles of oscillations (increasing V)
unlike the primary minima. This implies that in an experimental situation, even if
the secondary minima cannot be observed in the first few cycles, they could show
up in the later cycles.

III. DISCUSSION

Before concluding this paper, we briefly discuss the origin of the secondary
minima. Equation (9), which predicts the existence of the secondary minima in the
ballistic case, physically represents the condition that an electron reflected around
the ring interferes constructively with itself at its point of entry into the ring. This
minimizes the conductance by maximizing the reflection. Such a phenomenon can
be viewed as some kind of "coherent backscattering", but it is not exactly similar
to the magnetostatic Aronov-Al'tshuler-Spivak (AAS) effect which also involves
backscattering, but specifically involves interference of two backscattered time-
reversed paths. Conductance modulation due to the interference of time-reversed
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Fig. .1. Electrostatic A-B oscillations in a 1-d ring. The length of each path
is 5000 A. The carrier concentration is 1-55 x 106 cm - 1 and the parameter c =
0-5. The solid curve is for ballistic transport and the broken curve is for diffusive
transport. In the latter case. there are 10 elastic scatterers in each path arbitrarily
located. Strong localization would have set in if there were 33 scaterers in either
path. In both ballistic and diffusive transport, the secondary minima are bleached

out much more rapidly than the primary minima as the temperature is increased.

paths cannot occur in the electrostatic case since the time reversed paths always
interfere constructively and an external electrostatic potential cannot change thatO.

However, in spite of this basic difference, there is undeniably the superficial sim-
ilarity between the two effects in that they both double the frequency of the con-
ductance troughs in the oscillations.
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'This happens because the phase-shifts suffered by ah electron in traveling
along opposite directions have the same sign in the electrostatic case, but
opposite signs in the rnagnetostatic case.
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